

K–12 Computer Science Framework i

NMS.org
Transforming Math and Science Education

K–12 Computer Science Framework Steering Committee

CC BY-NC-SA 4.0. This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit https://creativecommons.org/licenses/by-nc-sa/4.0/

Authorization to reproduce this report in whole or in part is granted.

Suggested citation: K–12 Computer Science Framework. (2016). Retrieved from http://www.k12cs.org.

Suggested attribution: “The K–12 Computer Science Framework, led by the Association for Computing Machinery, Code.org, Computer Science
Teachers Association, Cyber Innovation Center, and National Math and Science Initiative in partnership with states and districts, informed the develop-
ment of this work.”

Examples of programs and resources are provided for the reader’s convenience and do not represent an endorsement.

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.k12cs.org

ii K–12 Computer Science Framework

Acknowledgments

The K–12 Computer Science Framework was a community effort. The following sections acknowledge
the different individuals and organizations who played a significant role in the development of the
framework.

Steering Committee
Thank you to Mehran Sahami of the Association for Computing Machinery, Cameron Wilson of Code.
org, Mark Nelson of the Computer Science Teachers Association (CSTA), Krystal Corbett of the Cyber
Innovation Center, and Deepa Muralidhar of the National Math and Science Initiative for guiding the
framework’s process.

States and Districts
The following states and districts participated in the development of the framework by nominating
writers and providing feedback on the framework.

States

Arkansas
California
Georgia
Idaho
Indiana
Iowa
Maryland
Massachusetts
Nebraska
Nevada
New Jersey
North Carolina
Utah
Washington

Districts

Charles County Public Schools, MD
Chicago Public Schools, IL
New York City Department of Education, NY
San Francisco Unified School District, CA

K–12 Computer Science Framework iii

Acknowledgements

Writers
The writers’ biographies are provided in Appendix B.

Julie Alano
Computer Science Teacher, Hamilton Southeastern
High School

Derek Babb
Computer Science Teacher, Omaha North Magnet
High School

Julia Bell
Associate Professor of Computer Science, Walters State
Community College

Tiara Booker-Dwyer
Education Program Specialist, Maryland State Department
of Education

Leigh Ann DeLyser
Director of Education and Research, CSNYC

Caitlin McMunn Dooley
Deputy Superintendent for Curriculum and Instruction
Georgia Department of Education; Associate Professor,
Georgia State University

Diana Franklin
Director of Computer Science Education, UChicago STEM Ed

Dan Frost
Senior Lecturer, University of California, Irvine

Mark A. Gruwell
Co-Facilitator, Iowa STEM Council Computer Science
Workgroup

Maya Israel
Assistant Professor, University of Illinois at Urbana
Champaign

Vanessa Jones
Instructional Technology Design Coach, Austin Independent
School District

Richard Kick
Mathematics and Computer Science Teacher, Newbury Park
High School

Heather Lageman
Executive Director of Leadership Development, Baltimore
County Public Schools

Todd Lash
Doctoral Student/Contributing Member, University of Illinois,
CSTA K–8 Task Force

Irene Lee
Researcher, Massachusetts Institute of Technology

Carl Lyman
Specialist over Information Technology Class Cluster, Utah
State Board of Education

Daniel Moix
Computer Science Education Specialist, Arkansas School for
Mathematics, Sciences & Arts

Dianne O’Grady-Cunniff
Computer Science Teacher, La Plata High School

Anthony A. Owen
Coordinator of Computer Science, Arkansas Department of
Education

Minsoo Park
Director of Teaching and Learning, Countryside School

Shaileen Crawford Pokress
Visiting Scholar, Wyss Institute at Harvard;
K–12 Curriculum Designer

George Reese
Director of MSTE, MSTE Office at University of Illinois at
Urbana Champaign

Hal Speed
Founder, CS4TX

Alfred Thompson
Computer Science Teacher, Bishop Guertin High School

Bryan Twarek
Computer Science Program Administrator, San Francisco
Unified School District

A. Nicki Washington
Associate Professor, Computer Science, Winthrop University

David Weintrop
Postdoctoral Researcher, UChicago STEM Ed

iv K–12 Computer Science Framework

Acknowledgements

Advisors
Alana Aaron, New York City Department of Education
Owen Astrachan, Duke University
Karen Brennan, Harvard University
Josh Caldwell, Code.org
Jill Denner, Education Training Research
Brian Dorn, University of Nebraska (Omaha)
Phillip Eaglin, ChangeExpectations.org
Kathi Fisler, Worcester Polytechnic Institute
Jeff Forbes, Duke University
Joanna Goode, University of Oregon
Shuchi Grover, SRI International
Mark Guzdial, Georgia Tech
Helen Hu, Westminster College
Yasmin Kafai, University of Pennsylvania
Fred Martin, University of Massachusetts (Lowell), CSTA board chair-elect
Don Miller, New York City Department of Education
Tammy Pirmann, CSTA board member, School District of Springfield Township (PA)
Meg Ray, Cornell Tech
Dave Reed, Creighton University, CSTA board chair
Deborah Seehorn, CSTA board past chair, standards co-chair
Ben Shapiro, University of Colorado (Boulder)
Chinma Uche, Greater Hartford Academy of Math and Science, CSTA board member
Sheena Vaidyanathan, Los Altos School District (CA), CSTA board member
Uri Wilensky, Northwestern University
Aman Yadav, Michigan State University, CSTA board member

Review
Thank you to the hundreds of individuals and organizations that provided feedback and support
during the three public review periods for the framework. The groups that convened reviews are listed
in Appendix A.

K–12 Computer Science Framework v

Acknowledgements

Special Contributions
Thank you to Jennifer Childress of Achieve for her advice and consultation during the development of
the framework.

Thank you to Heidi Schweingruber of the Board on Science Education at the National Academies of
Science, Engineering, and Medicine and Thomas Keller of the Maine Mathematics and Science
Alliance for sharing their experience developing the National Research Council Framework for K–12
Science Education.

In addition to developing the concepts and practices of the framework, the following writers provided
significant contributions to guidance chapters: Derek Babb, Leigh Ann DeLyser, Caitlin McMunn
Dooley, Maya Israel, Irene Lee, and Shaileen Crawford Pokress. Thank you to Courtney K. Blackwell for
contributing to the early childhood education and research chapters.

The following informal advisors provided critical feedback during the framework’s development
process: Peter Denning, Naval Postgraduate School; Alan Kay, Viewpoints Research Institute; Michael
Lach, UChicago STEM Education at University of Chicago; and Chris Stephenson, Google.

vi K–12 Computer Science Framework

Acknowledgments ... ii

Executive Summary ..1

 1. A Vision for K–12 Computer Science ..7

 2. Equity in Computer Science Education ...21

 3. Development Process ...39

 4. Navigating the Framework ...55

 5. Practices Including Computational Thinking ...65

 6. Concepts Including Crosscutting Concepts ..85

 7. Guidance for Standards Developers ...123

 8. Implementation Guidance: Curriculum, Course Pathways, and
 Teacher Development ...145

 9. Computer Science in Early Childhood Education ..181

 10. The Role of Research in the Development and Future of the Framework 199

Appendices ..229

 Appendix A: Feedback and Revisions ...231

 Appendix B: Biographies of Writers and Development Staff 245

 Appendix C: Glossary ..259

 Appendix D: Early Childhood Research Review ..269

 Appendix E: Bibliography of Framework Research ..277

 Appendix F: Frequently Asked Questions ..291

 Photo Credits ...297

Table of Contents

K–12 Computer Science Framework vii

Figures and Tables
Figures
Figure 0.1: The K–12 Computer Science Framework ...2

Figure 1.1: Building blocks for standards ..14

Figure 2.1: Example of block-based programming language ..31

Figure 3.1: Framework development process ...44

Figure 3.2: Example of connection between two concepts in the same grade band 50

Figure 3.3: Example of connection between two concepts in different grade bands 51

Figure 3.4: Example of connection between two statements
in the same core concept and grade band ...51

Figure 4.1: How to read the practices ...58

Figure 4.2: How to read the concepts ...59

Figure 4.3: Grade band view ...61

Figure 4.4: Progression view ...62

Figure 4.5: Concept view ...63

Figure 5.1: Core practices including computational thinking ...68

Figure 5.2: Relationships between computer science, science and
engineering, and math practices ..72

Figure 7.1: Building blocks for standards ..125

Figure 7.2: Differentiating rigor for all students ...128

Figure 7.3: Determining the right amount of rigor for a standard 130

Figure 7.4: Focusing on the concept ..131

Figure 7.5: A spectrum of specificity in standards ...132

Figure 7.6: Calibrating specificity across standards writers ..133

Figure 7.7: Example of technical terms versus simple language in standards135

Figure 7.8: Example learning progression ...137

Figure 7.9: Example of integrating a practice and concept to create a standard 139

Figure 7.10: Second example of integrating a practice and concept
to create a standard ...140

Figure 7.11: Exercise in standards creation ...141

viii K–12 Computer Science Framework

Figure 7.12: Example of a computer science standard that connects
with a science standard ..142

Figure 8.1: Recommended policies that promote and support
computer science education ..149

Figure 8.2: Concepts and practices of the K–12 Computer Science Framework152

Figure 8.3: Characteristics of careers that students deem important 154

Figure 8.4: Example of a culturally situated computing activity155

Figure 8.5: An example of the iterative process students could use
to create a garden of flowers ..158

Figure 8.6: Options for implementing computer science ...164

Figure 8.7: Multiple pathways for implementing K–12 computer science 165

Figure 8.8: Sample interview activity based on the framework 172

Figure 9.1: Integrating powerful ideas in computer science and
early childhood education ..185

Figure 9.2: Identifying patterns ...188

Figure 9.3: Student using technology resources during "Inventors Studio" 191

Figure 9.4: Example of representing numbers using fingers ...192

Figure 9.5: Numeric values that represent colors ..193

Figure 9.6: Sequence of steps to make a cheeseburger ..194

Figure A.1: Occupations of reviewers ..232

Figure A.2: Survey responses on the importance of the framework 233

Tables

Table 7.1: Guidance for Standards Developers summary ..126

Table 7.2: Examples of essential and non-essential topics ...131

Table 7.3: Examples of verbs that assist with measurability ...138

Table C.1: Glossary Terms ..259

Table C.2: Glossary References ..266

K–12 Computer Science Framework 1

Executive Summary

The influence of computing is felt daily and experienced on a personal, societal, and global level.
Computer science, the discipline that makes the use of computers possible, has driven innovation in
every industry and field of study, from anthropology to zoology. Computer science is also powering
approaches to many of our world’s toughest challenges; some
examples include decreasing automobile deaths, distributing
medical vaccines, and providing platforms for rural villagers
to participate in larger economies, among others.

As computing has become an integral part of our world,
public demand for computer science education is high. Most
parents want their child’s school to offer computer science
(Google & Gallup, 2015), and most Americans believe
computer science is as important to learn as reading, writing,
and math (Horizon Media, 2015). Many of today’s students will be using computer science in their
future careers, not only in science, technology, engineering, and mathematics (STEM) fields but also in
non-STEM fields (Change the Equation, 2015).

Unfortunately, the opportunity to learn computer science does not match public demand. Most U.S.
schools do not offer a single course in computer science and programming (Google & Gallup, 2015),
and many existing classes are not diverse and representative of our population (College Board, 2016).
Many students have to wait until high school to learn computer science, even though they were born
into a society dependent on computing and have never known a world without it. Although computers
are increasingly available to students in our nation’s schools, opportunities to learn computer science are
not accessible by all. State and local education agencies have
begun to adopt policies and develop key infrastructure to
support computer science for all students and have expressed
mutual interest for guidance in this new frontier.

The Association for Computing Machinery, Code.org,
Computer Science Teachers Association, Cyber Innovation
Center, and National Math and Science Initiative have
answered the call by organizing states, districts, and the
computer science education community to develop
conceptual guidelines for computer science education.
The K–12 Computer Science Framework was developed for
states, districts, schools, and organizations to inform the development of standards and curriculum, build
capacity for teaching computer science, and implement computer science pathways. The framework

Computer science is
powering approaches
to many of our world’s
toughest challenges.

The K–12 Computer
Science Framework informs
standards and curriculum,
professional development,
and the implementation of
computer science pathways.

2 K–12 Computer Science Framework

Executive Summary

promotes a vision in which all students critically engage in computer science issues; approach problems
in innovative ways; and create computational artifacts with a practical, personal, or societal intent.

The development of the framework was a community effort. Twenty-seven writers and twenty-five
advisors developed the framework with feedback from hundreds of reviewers including teachers,
researchers, higher education faculty, industry stakeholders, and informal educators. The group of
writers and advisors represents states and districts from across the nation, as well as a variety of
academic perspectives and experiences working with diverse student populations.

Figure 0.1: The K–12 Computer Science Framework

C O R E C O N C E P T S

C O R E P R A C T I C E S

Computing
Systems

Networks
and the
Internet

Data
and

Analysis
Impacts

of computing

Algorithms
and

Programming

Fostering
an Inclusive
Computing

Culture

Collaborating
Around

Computing

Testing and
Refining

Computational
Artifacts

Recognizing
and Defining

Computational
Problems

Communicating
About

Computing

Developing
and Using

Abstractions

Creating
Computational

Artifacts

K–12 Computer Science Framework 3

Executive Summary

The K–12 Computer Science Framework illuminates the big
ideas of computer science through a lens of concepts (i.e.,
what students should know) and practices (i.e., what students
should do). The core concepts of the framework represent
major content areas in the field of computer science. The
core practices represent the behaviors that computationally
literate students use to fully engage with the core concepts of
computer science. The framework’s learning progressions
describe how students’ conceptual understanding and
practice of computer science grow more sophisticated over
time. The concepts and practices are designed to be integrated to provide authentic, meaningful
experiences for students engaging in computer science (see Figure 0.1).

A number of significant themes are interwoven throughout the framework. They include:

• Equity. Issues of equity, inclusion, and diversity are addressed in the framework’s concepts and
practices, in recommendations for standards and curriculum, and in examples of efforts to
broaden participation in computer science education.

• Powerful ideas. The framework’s concepts and practices evoke authentic, powerful ideas that
can be used to solve real-world problems and connect understanding across multiple disciplines
(Papert, 2000).

• Computational thinking. Computational thinking practices such as abstraction, modeling, and
decomposition intersect with computer science concepts such as algorithms, automation, and
data visualization.

• Breadth of application. Computer science is more than coding. It involves physical systems and
networks; the collection, storage, and analysis of data; and the impact of computing on society.
This broad view of computer science emphasizes the range of applications that computer
science has in other fields.

The framework’s chapters provide critical guidance to states, districts, and organizations in key areas
of interest. Recommendations are provided to guide the development of rigorous and accessible
standards for all students. Guidance for designing curriculum, assessment, course pathways,
certification, and teacher development programs will inform implementation of the framework’s vision.
A chapter on computer science in early childhood education describes how computer science can be
integrated into the prekindergarten classroom by preserving, supporting, and enhancing the early
childhood focus on social-emotional learning and play. The relevant research on which the framework
is based, gaps in the K–12 computer science education research literature, and opportunities for
further study are described to inform future research and revisions to the framework. An appendix
includes a summary of public feedback submitted during the framework’s review periods and the
subsequent revisions made by writers.

The framework provides a
unifying vision to guide
computer science from a
subject for the fortunate few
to an opportunity for all.

4 K–12 Computer Science Framework

The K–12 Computer Science Framework comes at a time when our nation’s education systems are
adapting to a 21st century vision of students who are not just computer users but also computational-
ly literate creators who are proficient in the concepts and practices of computer science. As K–12
computer science continues to pick up momentum, states, districts, and organizations can use the
framework to develop standards, implement computer science pathways, and structure professional
development. The framework provides a unifying vision to guide computer science from a subject for
the fortunate few to an opportunity for all.

Executive Summary

K–12 Computer Science Framework 5

Executive Summary

References
Change the Equation. (2015, December 7). The hidden half [Blog post]. Retrieved from http://changetheequation.org/blog/

hidden-half

College Board. (2016). AP program participation and performance data 2015 [Data file]. Retrieved from https://research.
collegeboard.org/programs/ap/data/participation/ap-2015

Google & Gallup. (2015). Searching for computer science: Access and barriers in U.S. K–12 education. Retrieved from
http://g.co/cseduresearch

Horizon Media. (2015, October 5). Horizon Media study reveals Americans prioritize STEM subjects over the arts; science is
“cool,” coding is new literacy. PR Newswire. Retrieved from http://www.prnewswire.com/news-releases/horizon-media-
study-reveals-americans-prioritize-stem-subjects-over-the-arts-science-is-cool-coding-is-new-literacy-300154137.html

Papert, S. (2000). What’s the big idea? Toward a pedagogy of idea power. IBM Systems Journal, 39 (3/4), 720–729.

http://changetheequation.org/blog/hidden-half
http://changetheequation.org/blog/hidden-half
https://research.collegeboard.org/programs/ap/data/participation/ap-2015
https://research.collegeboard.org/programs/ap/data/participation/ap-2015
http://g.co/cseduresearch
http://www.prnewswire.com/news-releases/horizon-media-study-reveals-americans-prioritize-stem-subjects-over-the-arts-science-is-cool-coding-is-new-literacy-300154137.html
http://www.prnewswire.com/news-releases/horizon-media-study-reveals-americans-prioritize-stem-subjects-over-the-arts-science-is-cool-coding-is-new-literacy-300154137.html

A Vision for K–12
Computer Science

K-12 Computer Science Framework 9

1
A Vision for K–12 Computer Science

The K–12 Computer Science Framework represents a vision in which all students engage in the
concepts and practices of computer science. Beginning in the earliest grades and continuing through
12th grade, students will develop a foundation of computer science knowledge and learn new
approaches to problem solving that harness the power of computational thinking to become both
users and creators of computing technology. By applying computer science as a tool for learning and
expression in a variety of disciplines and interests, students will actively participate in a world that is
increasingly influenced by technology.

The Power of Computer Science
The power of computers stems from their ability to represent our physical reality as a virtual world
and their capacity to follow instructions with which to manipulate that world. Ideas, images, and
information can be translated into bits of data and processed
by computers to create apps, animations, or autonomous cars.
The variety of instructions that a computer can follow makes it
an engine of innovation that is limited only by our imagination.
Remarkably, computers can even follow instructions about
instructions in the form of programming languages.

Computers are fast, reliable, and powerful machines that
allow us to digitally construct, analyze, and communicate our
human experience. More than just a tool, computers are a

A computer is an engine
of innovation that is
limited only by our
imagination.

10 K–12 Computer Science Framework

A Vision for K–12 Computer Science

readily accessible medium for creative and personal expression. In our digital age, computers are
both the paint and the paintbrush. Computer science education creates the artists.

Schools have latched on to the promise that computers offer: to deliver instruction, serve as a
productivity tool, and connect to an ever-increasing source of information. This belief that computers
can improve education is apparent in the number of one-to-one device initiatives seen in our nation’s
school districts. Despite the availability of computers in schools, the most significant aspect of
computing has been held back from most of our students: learning how to create with computers
(i.e., computer science).

Literacy provides a relevant context for understanding the need for computer science education. From a
young age, students are taught how to read so that they can be influenced by what has been written but
also to write so that they can express ideas and influence others. Although computing is a powerful
medium like literacy, most students are taught only how to use
(i.e., read) the works of computing provided to them, rather
than to create (i.e., write) works for themselves. Together, the
“authors” who have worked in the computing medium over the
last few decades have transformed our society. Learning
computer science empowers students to become authors
themselves and create their own poems and stories in the form
of programs and software. Instead of being passive consumers
of computing technologies, they can become active producers
and creators. In our digital age, you can either “program or be
programmed” (Rushkoff, 2011, p. 1).

A Vision for K–12 Computer Science
From the abacus to today’s smartphones, from Ada Lovelace’s first computer program to Seymour
Papert’s powerful ideas, computing has dramatically shifted our world and holds promise to help
improve education. Computer science’s ways of thinking, problem solving, and creating have become
invaluable to all parts of life and are important beyond ensuring that we have enough skilled
technology workers. The K–12 Computer Science Framework envisions a future in which students
are informed citizens who can

• critically engage in public discussion on computer science topics;
• develop as learners, users, and creators of computer science knowledge and artifacts;
• better understand the role of computing in the world around them; and
• learn, perform, and express themselves in other subjects and interests.

In our digital age,
computers are both the
paint and the paintbrush.
Computer science
education creates
the artists.

K–12 Computer Science Framework 11

A Vision for K–12 Computer Science

This vision for computer science education is best understood by imagining one of the paths that
Maria (a student) could take during her K–12 computer science experience:

• In elementary school, Maria learns how to instruct computers by sequencing actions like puzzle
pieces to create computer algorithms that draw beautiful designs. From a young age, she
understands that computing is a creative experience and a tool for personal expression.

• In middle school, Maria grows more sophisticated in her use of computing concepts and
understanding of how computing works. She uses the computer, as well as computational ideas
and processes, to enhance learning experiences in other disciplines. Computing serves as a
medium for representing and solving problems.

• In high school, Maria sees opportunities within her community and society for applying computing
in novel ways. The concepts and practices of computer science have empowered her to create
authentic change on a small and large scale and across a wide variety of interests.

This vision holds promise to enhance the K–12 experience of
all students while preparing them for a wide variety of post-
secondary experiences and careers. Students who graduate
with a K–12 computer science foundation will go on to be
computationally literate members of society who are not just
consumers of technology but creators of it. They will become
doctors, artists, entrepreneurs, scientists, journalists, and
software developers who will drive even greater levels of innovation in these and a variety of
other fields, benefiting their communities and the world. The K–12 Computer Science Framework is
dedicated to making this vision of computer science education accessible to all.

The Case for Computer Science
The ubiquity of personal computing and our increasing reliance on technology have changed the
fabric of society and day-to-day life. Regardless of their future career, many students will be using
computer science at work; by one estimate, more than 7.7 million Americans use computers in
complex ways in their jobs, almost half of them in fields that are not directly related to science,
technology, engineering, and math (STEM) (Change the Equation, 2015). Unfortunately, K–12 students
today have limited opportunity to learn about these computer science concepts and practices and to
understand how computer science influences their daily lives.

When fewer than half of schools teach meaningful computer science courses (Google & Gallup, 2015b),
the huge disparity in access often marginalizes traditionally underrepresented students, who already
face educational inequities. This opportunity gap is reflected in an alarming lack of diversity in the
technology workforce (e.g., Information is Beautiful, 2015; Sullivan, 2014). The majority of computer
science classes are offered only to high school students, yet research in other STEM fields has
repeatedly shown that stereotypes (Scott & Martin, 2014) about who is good at or who belongs in

Not just consumers of
technology but creators.

12 K–12 Computer Science Framework

A Vision for K–12 Computer Science

those fields are established from a very young age. Addressing these messages earlier and providing
earlier access to computing experiences can help prevent these stereotypes from forming (Google,
2014). Early engagement in computer science also allows students to develop fluency with computer
science over many years (Guzdial, Ericson, McKlin, & Engelman, 2012) and gives them opportunities
to apply computer science to other subjects and interests as they go through school (Grover, 2014).
The lack of opportunity is particularly discouraging, given public opinion and recent job statistics on
computer science:

• Americans believe computer science is as important to learn as reading, writing, and math
(Horizon Media, 2015).

• Most parents want their child’s school to offer computer science (Google & Gallup, 2015b).
• Since 2010, computer science ranks as one of the fastest growing undergraduate majors of all

STEM fields (Fisher, 2015), and Advanced Placement (AP®) Computer Science is the fastest
growing AP exam, despite being offered in only 5% of schools (Code.org, 2015).

• Jobs that use computer science are some of the highest paying, highest growth (Bureau of
Labor Statistics, 2015), and most in-demand jobs that underpin the economy (The Conference
Board, 2016).

• Computer science is defined as part of a “well-rounded education” in the Every Student
Succeeds Act (2015).

K–12 Computer Science Framework 13

A Vision for K–12 Computer Science

What Is Computer Science?
Computing education in K–12 schools includes computer literacy, educational technology, digital
citizenship, information technology, and computer science. As the foundation for all computing,
computer science is “the study of computers and algorithmic processes, including their principles,
their hardware and software designs, their applications, and their impact on society” (Tucker et. al,
2006, p. 2). The K–12 Computer Science Framework organizes this body of knowledge into five core
concepts representing key content areas in computer science and seven practices representing
actions that students use to engage with the concepts in rich and meaningful ways.

Computer science is often confused with the everyday use of computers, such as learning how to
use the Internet and create digital presentations. Parents, teachers, students, and local and state
administrators can share this confusion. A recent survey shows that the majority of students believe
that creating documents and presentations (78%) and searching the Internet (57%) are computer
science activities (Google & Gallup, 2015a). Parents, teachers, and principals are almost as bad at
delineating the difference between traditional computer literacy activities and computer science, and
actually more parents than students believe that doing a search on the Internet is computer science
(Google & Gallup, 2015a). This confusion extends to state departments of education. A survey of
individuals responsible for state certification areas concluded,

Many states did not seem to have a clear definition or understanding of the field
“Computer Science” and exhibited a tendency to confuse Computer Science with other
subject areas such as: Technology Education/Educational Technology (TE/ET), Industrial or
Instructional Technology (IT), Management Information Systems (MIS), or even the use of
computers to support learning in other subject areas. (Khoury, 2007, p. 9)

These misconceptions about computer science pose serious challenges to offering high-quality
computer science experiences for all students. The K–12 Computer Science Framework clarifies not
only what computer science is but also what students should know and be able to do in computer
science from kindergarten to 12th grade. Computer science builds on computer literacy, educational
technology, digital citizenship, and information technology. Their differences and relationship with
computer science are described below.

• Computer literacy refers to the general use of computers and programs, such as productivity
software. Previously mentioned examples include performing an Internet search and creating a
digital presentation.

• Educational technology applies computer literacy to school subjects. For example, students in
an English class can use a web-based application to collaboratively create, edit, and store an
essay online.

14 K–12 Computer Science Framework

A Vision for K–12 Computer Science

• Digital citizenship refers to the appropriate and responsible use of technology, such as choosing
an appropriate password and keeping it secure.

• Information technology often overlaps with computer science but is mainly focused on industrial
applications of computer science, such as installing software rather than creating it. Information
technology professionals often have a background in computer science.

These aspects of computing are distinguished from computer science because they are focused on
using computer technologies rather than understanding why they work and how to create those
technologies. Knowing why and how computers work (i.e., computer science), provides the basis for a
deep understanding of computer use and the relevant rights, responsibilities, and applications.

Password security is a topic that illustrates the intersection between computer science and the other
aspects of computing. A student who knows how to program a computer to iterate over all of the
words in a list (i.e., array) in a split second is a student who will probably not use a dictionary word for
a password. In this case, understanding why and how computers work ultimately helps students make
good decisions about their use of computers.

Computer science is the foundation for computing. The framework envisions a future in which being
computer literate means knowing computer science.

Scope and Intended Audience
The concepts and practices of the K–12 Computer Science Framework are not specific, measurable
performance expectations in the form of standards, nor are they detailed lesson plans and activities in
the form of curriculum. Instead, the K–12 Computer Science Framework is a high-level guide that states,
districts, and organizations can use to inform the development of their own standards and curricula.
As illustrated in Figure 1.1, the framework provides building blocks of concepts (that students should
know) and practices (that students should do) which can be used to create standards (performance
expectations of what students should know and do).

Figure 1.1: Building blocks for standards

F R A M E WO R K : K N O W, D O S TA N DA R D S : K N O W A N D D O

Know

Know

Know
Know

Do

Do

Do

Do

K–12 Computer Science Framework 15

A Vision for K–12 Computer Science

It should also be made clear that the framework does not provide the full scope of computer science
content for advanced topics of study. The framework describes a baseline literacy for all students, so
those who elect to study computer science more deeply may look to honors, AP, or specialized
courses in career and technical education programs that include content beyond the framework.

The framework does not prescribe expectations for specific
courses. It does not provide grade level-specific outcomes, nor
does it define course structure (the scope and sequence of
topics in a particular course) or course pathways (the scope of
topics and sequence across multiple courses). The five core
concepts of the framework were not designed to serve as
independent units in a course or separate topics defining entire
courses; instead, the framework’s concepts and practices are
meant to be integrated throughout instruction.

The framework was written for an audience with diverse backgrounds, including educators who are
learning to teach computer science. This audience includes

• state/district policymakers and administrators;
• standards and curriculum developers (with sufficient computer science experience);
• current and new computer science teachers, including teachers from other subject areas and

educators in informal settings; and
• supporting organizations (nonprofits, industry partners, and informal education).

Principles Guiding the Framework
The following principles guided the development of the framework:

1. Broaden participation in computer science.
2. Focus on the essential.
3. Do not reinvent the wheel.
4. Inform with current research and guide future research.
5. Align to nationally recognized frameworks.
6. Inspire implementation.

Broaden Participation in Computer Science
First and foremost, the K–12 Computer Science Framework is designed for all students, regardless
of their age, race, gender, disability, or socioeconomic status. The structure and content of the
framework reflect the need for diversity in computing and attention to issues of equity, including
accessibility. The choice of Impacts of Computing as one of the core concepts and Fostering an
Inclusive Computing Culture as one of the core practices make diversity, equity, and accessibility key
topics of study, in addition to interweaving them through the other concepts and practices.

The framework’s concepts
and practices are meant
to be integrated
throughout instruction.

16 K–12 Computer Science Framework

A Vision for K–12 Computer Science

Focus on the Essential
The K–12 Computer Science Framework describes a foundational literacy in computer science, rather
than an exhaustive list of all computer science topics that can be learned within a K–12 pathway.
Although the framework describes what computer science is essential for all students, educators and
curriculum developers are encouraged to create a learning experience that extends beyond the
framework to encompass students’ many interests, abilities, and aspirations. Additionally, the
framework attempts to use jargon-free, plain language that is accessible to instructors and the
general public. Where technical terms are used, they are deemed necessary to stay true to disciplinary
vocabulary and to fully illustrate the relevant concepts.

Do Not Reinvent the Wheel
The K–12 Computer Science Framework is based on a history of professional research and practice in
computer science education. The framework is influenced by the work of professional organizations
like the Computer Science Teachers Association (CSTA Standards Task Force, 2011) and frameworks
from math, science, and technology education (e.g., ISTE, 2016). Nationally recognized course
frameworks like the Advanced Placement Computer Science Principles curriculum framework (College
Board, 2016) and the Association for Computing Machinery’s curriculum guidelines for undergraduate
computer science programs provided a vision for students who may continue to advanced computer
science studies. Computer science frameworks from other countries—the United Kingdom (England
Department for Education, 2013), Germany (Hubwieser, 2013), Poland (Sysło & Kwiatkowska, 2015),
and New Zealand (Bell, Andreae, & Robins, 2014)—were used to benchmark the concepts and
practices of the framework.

K–12 Computer Science Framework 17

A Vision for K–12 Computer Science

Inform With Current Research and Guide Future Research
The framework reflects current research in computer science education, including learning
progressions, trajectories, and computational thinking. Where specific computer science education
research is lacking, the framework relies on the existing knowledge base of the practitioner community
and research from other related content areas to guide decisions such as the developmental
appropriateness of particular concepts. Remaining questions have guided a research agenda that
will inform future revisions to the framework.

Align to Nationally Recognized Frameworks
Developing a framework for computer science education involves both defining a subject new to
most schools and relying on established structures and processes used in the development of other
education guidelines. Because this framework will exist alongside those from other subjects, the K–12
Computer Science Framework is intentionally structured in a similar way as other frameworks, such as
the Framework for K–12 Science Education (NRC, 2012). The use of a lens of concepts and practices
to view and describe K–12 computer science provides greater coherence across subject areas. The
K–12 Computer Science Framework also mirrored the development process of other community-
driven efforts. Transparency and inclusion were emphasized throughout the entire development
process via public summaries, monthly updates, forums/webinars, conversations with stakeholders,
advisor workshops, community previews, and public review periods. A summary of public feedback
and subsequent revisions to the framework can be found in Appendix A.

Inspire Implementation
Whether a state or district is already in the process of implementing computer science for all
students, or has just begun, the K–12 Computer Science Framework provides a coherent vision for
inspiring further efforts. The framework contains chapters that provide guidance on a variety of key
implementation steps, such as developing standards, preparing teachers, and creating curriculum that
reflects the concepts and practices of the framework. Policy and implementation must go hand in
hand to provide high-quality computer science opportunities for all students.

18 K–12 Computer Science Framework

A Vision for K–12 Computer Science

Summary
The goal of this project has been to provide a high-level framework for K–12 computer science
education by identifying the core concepts and practices of computer science and describing what
those concepts and practices look like for students at various grade bands. The framework provides
guidance to states, districts, and organizations that want to design their own standards, curriculum,
assessments, or teacher preparation programs. Computer science education is an evolving field with a
growing research body at the K–12 level and many lessons to be learned as education systems take
steps to increase computer science opportunities. The community that has developed and supported
this project believes that the K–12 Computer Science Framework is an initial step to inform, inspire,
and drive the implementation work required to make the vision of the framework a reality—computer
science for all students.

K–12 Computer Science Framework 19

References
Bell, T., Andreae, P., & Robins, A. (2014). A case study of the introduction of computer science in NZ schools.

ACM Transactions on Computing Education (TOCE), 14(10), 10:1–10:31. doi: 10.1145/2602485

Bureau of Labor Statistics. (2015). Employment projections [Data file]. Retrieved from http://www.bls.gov/emp/tables.htm

Change the Equation. (2015, December 7). The hidden half [Blog post]. Retrieved from
http://changetheequation.org/blog/hidden-half

 Code.org. (2015, July 2). Computer science is the fastest growing AP course of the 2010s [Blog post]. Retrieved from
http://blog.code.org/post/123032125688/apcs-2015

College Board. (2016). AP Computer Science Principles course and exam description. New York, NY: College Board.
Retrieved from https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-
course-and-exam-description.pdf

Computer Science Teachers Association Standards Task Force. (2011). CSTA K–12 computer science standards, revised 2011.
New York, NY: Computer Science Teachers Association and Association for Computing Machinery. Retrieved from
http://www.csteachers.org/resource/resmgr/Docs/Standards/CSTA_K-12_CSS.pdf

The Conference Board. (2016). National demand rate and OES employment data by occupation [Data file]. Retrieved from
https://www.conference-board.org/

England Department for Education. (2013, September 11). National curriculum in England: Computing programmes of study.
Retrieved from https://www.gov.uk/government/publications/national-curriculum-in-england-computing-pro-
grammes-of-study/national-curriculum-in-england-computing-programmes-of-study

Every Student Succeeds Act of 2015, Pub. L. No. 114-95. 20 U.S.C.A. 6301 (2016).

Fisher, A. (2015, February 10). The fastest-growing STEM major in the U.S. Fortune. Retrieved from
http://fortune.com/2015/02/10/college-major-statistics-fastest-growing/

Google. (2014). Women who choose computer science—what really matters: The critical role of encouragement and
exposure. Mountain View: CA. Retrieved from https://www.google.com/edu/resources/computerscience/research/

Google & Gallup. (2015a). Images of computer science: Perceptions among students, parents, and educators in the U.S.
Retrieved from http://g.co/cseduresearch

Google & Gallup. (2015b). Searching for computer science: Access and barriers in U.S. K–12 education. Retrieved from
http://g.co/cseduresearch

Grover, S. (2014). Foundations for advancing computational thinking: Balanced designs for deeper learning in an online
computer science course for middle school students (Doctoral dissertation). Stanford University, CA.

Guzdial, M., Ericson, B. J., McKlin, T., & Engelman, S. (2012). A statewide survey on computing education pathways and
influences: Factors in broadening participation in computing. Proceedings of the Ninth Annual International Conference on
International Computing Education Research (pp. 143–150). New York, NY. doi: 10.1145/2361276.2361304

Horizon Media. (2015, October 5). Horizon Media study reveals Americans prioritize STEM subjects over the arts; science is
“cool,” coding is new literacy. PR Newswire. Retrieved from http://www.prnewswire.com/news-releases/horizon-media-
study-reveals-americans-prioritize-stem-subjects-over-the-arts-science-is-cool-coding-is-new-literacy-300154137.html

Hubwieser, P. (2013). The Darmstadt model: A first step towards a research framework for computer science education in
schools. In I. Diethelm & R. T. Mittermeir (Eds.), Informatics in Schools: Sustainable Informatics Education for Pupils of All
Ages. Proceedings of the 6th International Conference on Informatics in Schools: Situation, Evolution, and Perspectives
(ISSEP 13), Oldenburg, Germany (pp. 1–14). doi: 10.1007/978-3-642-36617-8_1

Information is Beautiful. (2015). Diversity in tech: Employee breakdown of key technology companies. Retrieved from
http://www.informationisbeautiful.net/visualizations/diversity-in-tech/

A Vision for K–12 Computer Science

http://www.bls.gov/emp/tables.htm
http://changetheequation.org/blog/hidden-half
http://blog.code.org/post/123032125688/apcs-2015
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
http://www.csteachers.org/resource/resmgr/Docs/Standards/CSTA_K-12_CSS.pdf
https://www.conference-board.org/
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
http://fortune.com/2015/02/10/college-major-statistics-fastest-growing/
https://www.google.com/edu/resources/computerscience/research/
http://g.co/cseduresearch
http://g.co/cseduresearch
http://www.prnewswire.com/news-releases/horizon-media-study-reveals-americans-prioritize-stem-subjects-over-the-arts-science-is-cool-coding-is-new-literacy-300154137.html
http://www.prnewswire.com/news-releases/horizon-media-study-reveals-americans-prioritize-stem-subjects-over-the-arts-science-is-cool-coding-is-new-literacy-300154137.html
http://www.informationisbeautiful.net/visualizations/diversity-in-tech/

20 K–12 Computer Science Framework

A Vision for K–12 Computer Science

International Society for Technology in Education. (2016). ISTE standards for students. Retrieved from
https://www.iste.org/resources/product?id=3879&childProduct=3848

Khoury, G. (2007). Computer science state certification requirements. CSTA Certification Committee report. Retrieved from
the Computer Science Teachers Association website: https://csta.acm.org/ComputerScienceTeacherCertification/sub/
TeachCertRept07New.pdf

National Research Council. (2012). A framework for K–12 science education: Practices, crosscutting concepts, and core ideas.
Committee on a Conceptual Framework for New K–12 Science Education Standards. Board on Science Education, Division
of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.

Rushkoff, D. (2010). Program or be programmed: Ten commands for a digital age. New York, NY: OR Books.

Scott, A., & Martin, A. (2014). Perceived barriers to higher education in science, technology, engineering, and mathematics.
Journal of Women and Minorities in Science and Engineering, 20(3), 235–256. doi: 10.1615/
JWomenMinorScienEng.2014006999

Sullivan, G. (2014, May 29). Google statistics show Silicon Valley has a diversity problem. The Washington Post. Retrieved
from https://www.washingtonpost.com/news/morning-mix/wp/2014/05/29/most-google-employees-are-white-men-where-
are-allthewomen/

Sysło, M. M., & Kwiatkowska, A. B. (2015). Introducing a new computer science curriculum for all school levels in Poland. In A.
Brodnik & J. Vahrenhold (Eds.), Informatics in Schools: Curricula, Competences, and Competitions. Proceedings of the 8th
International Conference on Informatics in Schools: Situation, Evolution, and Perspectives (ISSEP 2015), Ljubljana, Slovenia
(pp. 141–154). doi: 10.1007/978-3-319-25396-1_13

Tucker, A., McCowan, D., Deek, F., Stephenson, C., Jones, J., & Verno, A. (2006). A model curriculum for K–12 computer
science: Report of the ACM K–12 task force curriculum committee (2nd ed.). New York, NY: Association for Computing
Machinery.

https://www.iste.org/resources/product?id=3879&childProduct=3848
http://10.1615/JWomenMinorScienEng
http://10.1615/JWomenMinorScienEng
https://www.washingtonpost.com/news/morning-mix/wp/2014/05/29/most-google-employees-are-white-men-where-are-allthewomen/
https://www.washingtonpost.com/news/morning-mix/wp/2014/05/29/most-google-employees-are-white-men-where-are-allthewomen/

Equity in Computer
Science Education

K-12 Computer Science Framework 23

2
Equity in Computer Science Education

Computer science for all students requires that equity be at the forefront of any reform effort, whether
at the policy level of a framework or at the school level of instruction and classroom culture. When
equity exists, there are appropriate supports based on
individual students’ needs so that all have the opportunity to
achieve similar levels of success. Inherent in this goal is a
comprehensive expectation of academic success that is
accessible by and applies to every student. The purpose of
equity in computer science is not to prepare all students to
major in computer science and go on to careers in software
engineering or technology. Instead, it is about ensuring that
all students have the foundational knowledge that will allow
them to productively participate in today’s world and make
informed decisions about their lives. Equity is not just about
whether classes are available, but also about how those
classes are taught, how students are recruited, and how the
classroom culture supports diverse learners and promotes
retention. The result of equity is a diverse classroom of
students, based on factors such as race, gender, disability, socioeconomic status, and English
language proficiency, all of whom have high expectations and feel empowered to learn. Computer
science is more than a discipline for a select few; it is an essential 21st century literacy for all students.

Equity is not just about
whether classes are
available, but also
about how those classes
are taught, how students
are recruited, and how
the classroom culture
supports diverse learners
and promotes retention.

24 K–12 Computer Science Framework

Equity in Computer Science Education

This chapter reviews equity issues related to computer science, describes how these issues have
influenced the development of the framework, and offers brief examples of current efforts to promote
equity in computer science education. While equity is the focus of this chapter, it also serves as a
major theme connecting all aspects of the framework: the core concepts and practices, the guidance
chapters, and even the development process. Additional recommendations for promoting equity
can be found in the following chapters: Guidance for Standards Developers, Implementation
Guidance, and The Role of Research in the Development and Future of the Framework.

The Need to Address Equity in Computer Science
Although concerns about equity are prevalent in science, technology, engineering, and math (STEM)
education, computer science faces intense challenges in terms of access, opportunity, and culture. A
study by Google and Gallup (2015b) showed that fewer than half of K–12 schools offer meaningful
computer science courses that include programming. An analysis of the 2015 National Assessment
of Educational Progress (NAEP) survey showed that only 44% of 12th graders attend high schools
that offer any computer science courses (Change the Equation, 2016). The same NAEP data revealed
that students with the least access are Native American, Black, and Latino; from lower income
backgrounds; and from rural areas.

These surveys represent best-case scenarios as, according to Google and Gallup (2015a), “many
students, parents, teachers and school administrators do not properly distinguish between computer
science activities and general computer literacy” (p. 3). It is possible that many respondents are
confusing computer science with computer literacy, decreasing the reported percentage of actual
computer science courses. Across the nation, there is no common definition of computer science, and
it is often conflated with computer literacy activities, such as searching the Internet and creating

K–12 Computer Science Framework 25

Equity in Computer Science Education

documents or presentations on the computer (Google & Gallup, 2015a). Students may not know any
better when they get placed into so-called computer courses that have more to do with learning how
to type than learning computer science (Margolis, Estrella, Goode, Holme, & Nao, 2010). According
to Margolis et al. (2012), “Especially in schools with high numbers of African American and Latino/a
students, computer classes too commonly offer only basic, rudimentary user skills rather than
engaging students with the problem-solving and computational thinking practices that are the
foundation of computer science” (p. 73).

Even when computer science courses are available, there are wide gaps in participation. For the 2015
Advanced Placement (AP®) Computer Science exam, only 21.9% of students were female, the worst
female participation rate of all the AP exams (College Board, 2016). Only 3.9% were Black or African
American, 9% were Hispanic or Latino, and 0.4% were American Indian.1 Schools often shoulder the
blame for inequities in education, but stereotypes and media representations of computer scientists
can play a large factor in how students feel about the subject. Parents and students report that the
people who do computer science in film or television are overwhelmingly male, White or Asian, and
wearing glasses (Google & Gallup, 2015a). Females report that they are less likely to learn computer
science, have less confidence in learning it, and are less likely to need to know computer science in
their future career (Google & Gallup, 2015a).

The lack of access and participation at the K–12 level has a
clear effect on representation in computer science after K–12.
In 2015, only 24.7% of those employed in computer and
mathematical occupations were female, 8.6% Black or African
American, and 6.8% Hispanic or Latino (Bureau of Labor
Statistics, 2015b). When looking specifically at students
graduating with a bachelor’s degree in computer science,
only 17% of students are female, 8% are Black, and 9% are
Hispanic (NCES, 2014). The proportion of women with
bachelor’s degrees in computer science has actually declined
from 1993 to 2012 (NSF, 2015). Fortunately, there are positive signs that learning computer science in
high school is correlated with a greater likelihood of pursuing computer science in postsecondary
study. Students who take AP Computer Science in high school are six times more likely to major in
computer science than students who did not take AP Computer Science in high school. Females are
10 times more likely, African American students are 7 times more likely, and Hispanic students are 8.5
times more likely (Morgan & Klaric, 2007).

1 Compare this to the overall participation rate of underrepresented minorities. In 2013, for example, 9.2% of AP exam takers were Black or African
American, 18.8% Hispanic or Latino, and 0.6% American Indian (College Board, 2014). Advanced Placement® is a trademark registered and/or owned by
the College Board, which was not involved in the production of, and does not endorse, this product.

Females who take
AP Computer Science
are 10 times more
likely to major in
computer science.

26 K–12 Computer Science Framework

Equity in Computer Science Education

Public opinion and the role of computer science in our
economy only highlight the disparity between access and the
benefits of a computer science education. Most Americans
believe computer science is as important to learn as reading,
writing, and mathematics (Horizon Media, 2015), and most
parents want their child’s school to offer computer science
(Google & Gallup, 2015b). More than 90% of students and
parents agree that people who work in computer science
have the opportunity to work on fun and exciting projects and
make things that help improve people’s lives (Google &
Gallup, 2015a). Additionally, jobs that use computer science
are some of the highest paying (Bureau of Labor Statistics,
2015c; Burning Glass Technologies, 2016), highest growth (Bureau of Labor Statistics, 2015a), and
most in-demand jobs (The Conference Board, 2016) that underpin the economy.

Equity in the Framework
Computer science is a discipline in service of society, its people, and their needs. As such, equity,
inclusion, and diversity are critical factors in all aspects of computer science. When setting up a team,
understanding the benefits of inclusion and diversity motivates students to actively seek out
collaborators with different perspectives and backgrounds. When designing a smartphone app, a
concern about equity motivates teams to think about how to design the user interface for those
with visual impairments. These are just some of the ideas illustrated in the concepts and practices
of the framework.

The goal of promoting diversity shaped the framework’s entire development process and began
with the makeup of the team of people developing the framework. The writers and advisors were
demographically diverse based on gender, race, ethnicity, institutional representation (state/district
agency, nonprofit, research, industry, K–12 school), as
well as the populations with which they work or study. The
writers and advisors represented a full range of educational
experiences, from elementary school to higher education;
informal and formal education settings; private and public
schools; and rural, urban, and suburban locations. For
example, multiple writers and advisors had experience
working with Native American students on reservations.
While the vast majority of the writers taught or were currently
teaching computer science, they also had expertise in a
variety of subjects, including other STEM subjects, as well as
humanities such as language arts and social studies. The

People who work in
computer science have
the opportunity to work
on fun and exciting
projects and make
things that help improve
people’s lives.

The writing team
included teachers whose
professional focus was
students with cognitive
and physical disabilities
and students at risk of
academic failure.

K–12 Computer Science Framework 27

Equity in Computer Science Education

writing team included special education researchers and teachers whose professional focus was
students with cognitive and physical disabilities and students at risk of academic failure. Read the
writers’ biographies in Appendix B.

Multiple elements relating to the framework’s vision, structure, and content emphasize that computer
science is a discipline in which all students can engage and demonstrate proficiency. The following
sections describe the ways in which equity was considered when determining the framework’s
essential ideas, breadth of the concepts, learning progressions in the concepts, and computer
science practices.

Essential Ideas
The framework describes a comprehensive and essential foundation in computer science that all
students can benefit from, regardless of whether or not they will go on to postsecondary education
in computer science or to a career in computer science. The computer science described in the
framework is not just for “gifted” or “honors” students but all students, including those who can and
should advance past the expectations in the framework. The significance and importance of each
concept and practice was evaluated by writers, advisors, and reviewers, with constant consideration of
a diverse student population. Only ideas deemed essential were incorporated into the framework’s
concepts and practices. In addition, the descriptions of concepts and practices were analyzed to make
sure the language was not biased based on gender, culture, or disability.

Broad Concepts
Rather than prescriptive, narrow ideas in computer science, the framework statements are conceptual
and high-level. The framework does not specify the amount of instruction time for each concept
or the order in which the concepts should be addressed. Instead, the conceptual nature of the
framework allows for broad implementation possibilities, including in some cases, integration and
application within other topics and subjects. Schools that may have trouble fitting an additional
subject into the school day can integrate the framework’s concepts into current course offerings. This
integration is especially beneficial for students who deserve experiences in computer science yet
require instructional time in traditional core subjects. A graphic describing the intersection between
practices in mathematics, science, and computer science is available in the Practices chapter of the
framework (see Figure 5.2).

Complete Learning Progressions
The core concepts in the framework are divided into more specific subconcepts, which provide focal
points for the development of complete learning progressions from kindergarten to 12th grade. This
attention to coherence and articulation between grade bands means that the framework reflects all of
the key stages in a learning progression. Incomplete learning progressions require additional, out-of-
school opportunities to fill gaps in knowledge, putting students without these experiences at a
disadvantage.

28 K–12 Computer Science Framework

Equity in Computer Science Education

Computer Science Practices
The computer science practices focus on doing computer science, in addition to knowing it, and
provide a variety of opportunities for many different types of learners to participate on a level playing
field with other students. This is especially true for English language learners who may otherwise
struggle with demonstrating conceptual knowledge in traditional ways due to their limited English
ability, as they can demonstrate their understanding in other ways. Additionally, the use of the
practices also facilitates rich learning opportunities that can reinforce language acquisition. For
example, practices such as Communicating About Computing describe the expectation that all
students exchange ideas with diverse audiences in a variety of ways. In the process of Collaborating
Around Computing, students solicit and provide feedback from team members. These interactions
allow English language learners to build their language proficiency while engaging in authentic
computer science activities.

Examples of Equity in Concept and Practice Statements
The next sections include specific examples of concepts and practices that address equity, encourage
diversity, and foster inclusion. These are only a few examples of the ways that equity, diversity, and
inclusion are addressed in the concept and practice statements; there are many others.

Examples: Weaving Equity Into Concepts
Equity is woven throughout the concept statements. A few examples are discussed here.

Equity is particularly apparent in the Impacts of Computing core concept, as the overview states,
“An informed and responsible person should understand the social implications of the digital world,
including equity and access to computing.” Specific concept statements address equity directly. In
Grades 9–12, students should understand that the “design and use of computing technologies and
artifacts can improve, worsen, or maintain inequitable access to information and opportunities” (9–12.
Impacts of Computing.Culture). The description for this concept statement elaborates on issues of
equity and access:

While many people have direct access to computing throughout their day, many others are
still underserved or simply do not have access. Some of these challenges are related to the
design of computing technologies, as in the case of technologies that are difficult for senior
citizens and people with physical disabilities to use. Other equity deficits, such as minimal
exposure to computing, access to education, and training opportunities, are related to
larger, systemic problems in society. (9–12.Impacts of Computing.Culture)

Ties to equity, inclusion, and diversity are also found in other concept areas. For example, in Grades
6–8 under the core concept of Algorithms and Programming, students should understand that
designing solutions involves “carefully considering the diverse needs and wants of the community”

http://12.Impacts
http://12.Impacts
http://12.Impacts

K–12 Computer Science Framework 29

Equity in Computer Science Education

(6–8.Algorithms and Programming.Program Development). The description provides an example
of how a team that employs user-centered design may develop an app that translates hard-to-
understand pronunciation from people with speech difficulties into understandable language. In
Grades 9–12, students learn that “diverse teams can develop programs with a broad impact through
careful review and by drawing on the strengths of members in different roles” (9–12.Algorithms and
Programming.Program Development).

Examples: Weaving Equity Into Practices
Considerations of equity are included in many of the practices, but it is the main focus of the first core
practice.

The practice Fostering an Inclusive Computing Culture is dedicated to equity, inclusion, and diversity.
The associated practice statements are below:

By the end of Grade 12, students should be able to:

1. Include the unique perspectives of others and reflect on one’s own perspectives when
designing and developing computational products.

2. Address the needs of diverse end users during the design process to produce artifacts with
broad accessibility and usability.

3. Employ self- and peer-advocacy to address bias in interactions, product design, and
development methods.

These practice statements emphasize the role that equity, inclusion, and diversity each play in the
design of computational artifacts. The Collaborating Around Computing practice also describes ways
of promoting inclusion in computer science. The first practice statement reads, “Cultivate working
relationships with individuals possessing diverse perspectives, skills, and personalities.” To fulfill this
recommendation, students learn strategies for including all team members’ ideas, such as trying
to draw out the opinions of the quieter collaborators. Other instances in the practice overviews,
statements, and progressions attend to concerns about equity, diversity, and inclusion. These
instances emphasize the need to practice equity and inclusion when doing computer science, such
as creating an app or robot, to benefit from diverse collaborators and attention to diverse users.

Efforts to Increase Access and Opportunity
Computer science education research has described how inequity can be perpetuated on a small
scale, as in a classroom, as well as on a large scale, as in course availability and scheduling.
Differences in learning opportunities are often seen along the lines of gender, race, disability, and
socioeconomic status and are reflected in reduced access to resources, such as ample computer labs

30 K–12 Computer Science Framework

Equity in Computer Science Education

or adequately trained teachers (Ladner & Israel, 2016; Margolis et al., 2010). The role of school struc-
tures and educators’ belief systems in limiting access, recruitment, and retention of African American
and Latino students in Los Angeles are well documented by Margolis and associates (2010) in Stuck in
the Shallow End. In an article in ACM Inroads (2012), Margolis et al. explain, “Course offerings (or lack
thereof), placement outside of the academic core curriculum, lack of teacher preparation and instruc-
tional resources, as well as the educational climate of school accountability required by state and
federal legislation, all result in wide disparities and the lack of availability and quality of CS education
opportunities for students of color” (p. 73). Inequities can also be propagated when programs are
scaled up to meet national needs and demands for computer science, unless recruitment, expansion,
and equity are actively monitored during the scaling process (Margolis, Goode, & Chapman, 2015).

Equity issues also arise at the level of student interactions within the classroom. Research confirms that
pair programming, a type of collaborative structure when students program together while rotating
through defined roles, can be beneficial for building computational thinking and developing program-
ming knowledge (Denner, Werner, Campe, & Ortiz, 2014). Yet in situations of pair programming, pair
compatibility and the focus of the work can lead to inequity. Pairs of students with more incompatibilities
result in more course withdrawals and lower retention in beginning programming courses (Watkins &
Watkins, 2009). Student pairs whose programming focuses on speed of completion, rather than quality
and collaboration, often show more inequitable interactions (Lewis & Shah, 2015). Differences in equity
can also appear in other student interactions outside of programming, such as those based on students’
access to productive peer relationships (Shah et al., 2013) or technology-oriented peer groups (Goode,
Estrella, & Margolis, 2006).

As computer science instruction moves into the mainstream
classroom, programming environments and curricula need
to be differentiated for a more diverse student population.
Recent research has explored the use of Universal Design
for Learning (UDL) to develop and refine introductory
computer science experiences for a wide range of learners
(Hansen, Hansen, Dwyer, Harlow & Franklin, 2016).
The learning accommodations and curricular modifications
demonstrate that established techniques for differentiation
instruction can be readily applied in computer science to
engage all students.

The following sections briefly describe efforts to increase access to computer science and change
curriculum, instruction, and classroom culture. Although they are not comprehensive, the following
examples illustrate key, practical approaches that educators can use to increase equity in computer
science. Each example demonstrates the importance of providing both access and support to present
realistic opportunities for students to learn computer science.

Established techniques
for differentiation
instruction can be
readily applied in
computer science to
engage all students

K–12 Computer Science Framework 31

Equity in Computer Science Education

Examples: Reaching Young Students and Beginners
A variety of approaches make programming more accessible to young learners and beginners. Visual,
block-based programming languages designed for education (see Figure 2.1) allow students to
program without the obstacle of syntax errors (errors in typing commands) found in traditional
text-based languages.

Figure 2.1: Example of block-based programming language

32 K–12 Computer Science Framework

Equity in Computer Science Education

These languages and environments have been designed for both young students and beginning
programmers, but they also allow for students to build complex programs, games, apps, and
animations. The social communities that have evolved around them allow students to support each
other’s development by sharing, reusing, and remixing others’ creations (Brennan & Resnick, 2012;
Kafai & Burke, 2014). Programming environments on tablets for kids as young as 5 years old have
made programming even more accessible to younger children by reducing the number of available
commands and the amount of reading required to navigate the options (Strawhacker & Bers, 2014). A
robotics environment created for prekindergarten students uses physical wooden blocks to create sets
of commands that can be read by the robot and executed (Elkin, Sullivan, & Bers, 2014). Games and
apps that teach programming skills are even available on smartphones.

School districts around the country have transformed their elementary computer classes to focus on
computer science (e.g., Lincoln Public Schools, 2016; New York City Department of Education, 2016;
San Francisco Unified School District, 2016). Beginning in elementary school, students use visual,
block-based programming languages and learn about variables, loops, conditional statements,
functions, events, and more in the context of making projects they find fun and engaging. As they
transition to older grades, they apply their skills to create projects, stories, games, apps, program
robots, and more. There are nationwide curriculum and professional development efforts focused on
helping elementary school teachers learn and integrate computer science into students’ classroom
experience (e.g., Code.org, 2016; Project Lead the Way, 2016).

Access to high-quality computer science continues to be a problem in middle school. In the transition
from elementary school, classes become subject-specific and computer science is often out of place.
To combat this issue, groups have created computer science curricula focused on the developmental
and intellectual ability level of middle school students that can be integrated into existing courses
such as mathematics, science, English, and social studies. University programs are working with
middle school teachers across a variety of subjects to create lessons that use the principles of
computer science to deliver their content (e.g., University of Nebraska at Omaha, 2016). The
approach of teaching other subjects through the lens of computer science is exemplified by efforts
that teach algebra concepts by programming video games (Bootstrap, 2016) and science through
modeling and simulation (Project GUTS, 2016).

While a lack of computers and Internet access continues to be a disadvantage for reaching all
students, many computer science topics, such as algorithmic thinking, searching, sorting, and logic,
can be learned without computers. “Unplugged” computer science is an approach to learning
computer science concepts through physical, kinesthetic experiences and can be taught independent
of computer or online access (CS Unplugged, 2016). Students go on a treasure hunt to understand
finite state automata, do magic tricks to learn how computers detect errors, and pass fruit around to
learn about network routing and deadlock. Teachers can combine these unplugged experiences with
programming exercises to provide even richer experiences for young students.

K–12 Computer Science Framework 33

Equity in Computer Science Education

Examples: Reaching Students With Disabilities
Some research and implementation groups are focusing their work on ensuring meaningful access to
computer science for students with disabilities. This work is of critical importance as 13% of students
in U.S. public schools receive special education services under the Individuals with Disabilities
Education Act (NCES, 2016) and another significant portion of students receive accommodations
under the Americans with Disabilities Act. Because schools are legally required to meet the needs of
these learners, it is critical that computer science education focus on this population of learners as
well. Three recent efforts have been under way to reach students with disabilities. The Quorum
programming language, developed at the University of Nevada, Las Vegas, is able to be read by
existing computer screen readers, making it accessible to students with visual impairments (Quorum,
2016). In addition to accommodating students with sensory disabilities such as visual impairments,
researchers at the Creative Technologies Research Lab (CTRL-Shift) at the University of Illinois at
Urbana Champaign are developing and researching teaching strategies focused on increasing access
to computing for students with cognitive disabilities (Creative Technologies Research Lab, 2016).
Researchers in the ACCESS CS10K group at the University of Washington have developed curriculum
resources and provide professional development for teachers of students with disabilities
(AccessCS10K, 2016).

34 K–12 Computer Science Framework

Equity in Computer Science Education

Examples: Reaching Females and Underrepresented Minorities
Many programs and strategies are designed to engage students from groups that are underrepresented
in computer science. Exploring Computer Science (ECS, 2016), an introductory high school-level course,
and AP Computer Science Principles, an introductory college-level course, are two of the most recent
and prominent in-school courses. Their content and attention to equity influenced the concepts and
practices of the framework. Teachers of these and other courses employ a number of strategies to
combat issues, such as stereotype threat, bias, and fixed mindsets, that endanger equity in the
classroom. Together, these programs and strategies exemplify an approach to changing curriculum,
instruction, and classroom culture to broaden participation, especially among females and
underrepresented minorities.

ECS is designed to engage high school students in computational practices. Projects and instruction
are based in inquiry and equity and designed to be socially relevant and meaningful for diverse
students. Margolis et. al (2012) describe the culturally relevant approach in ECS lessons:

These types of lessons are one way to help students build personal relationships with CS
concepts and applications—an important process for discovering the relevance of CS for
their own lives. For example, students can learn fractal geometry through the “African
Fractals” program or “[Cornrow] Braiding” program, but they can also learn physics and
ways to program slopes and arcs through the “Skateboarding” program. We recognize
that students are all different, culture is multi-layered, and while some students may be
interested in their ancestors’ cultures, others may be interested in the culture of hip hop,
graphic design, skateboarding, medicine, and an endless list of different practices. (p. 76)

The accompanying professional development program is based on three major pillars: computer
science content/concepts, inquiry, and equity. Although some teachers may have trouble seeing
inequity in their classroom (Hu, Heiner, & McCarthy, 2016), the professional development sessions are
aimed at addressing teacher belief systems and can open up thoughts about deficit thinking and
preparatory privilege (Margolis, Goode, Chapman, & Ryoo, 2014). Teachers are trained to leverage
students’ cultural knowledge and bring it into the learning experience (Goode, 2008; Eglash, Gilbert,
& Foster, 2013).

The AP Computer Science Principles course highlights seven big ideas and six computational
practices in an effort to appeal to a wide student audience who may be interested in computer
science beyond the traditional programming-centric experience currently in K–12 schools. Students
learn about a range of topics, from how computing extends human expression to how technology
affects the world. The AP Computer Science Principles course differs from ECS in a few ways. First,
despite serving as an introductory course, AP Computer Science Principles is considered college-level
coursework and may not be appropriate as the only computer science offering in a high school.
Second, unlike ECS, there is not one singular curriculum; teachers and content providers create lesson
plans and resources based on the provided course framework. Finally, students may qualify for
college-level credit or placement by passing an end-of-year exam composed of multiple-choice
questions as well as performance tasks that are completed as through-course assessments during the

K–12 Computer Science Framework 35

Equity in Computer Science Education

year. These performance tasks allow students to meet measurable assessment objectives by
completing some tasks that allow for personal choice in choosing topics as well as encouraging
collaboration with peers.

A variety of actions for changing classroom culture require a community to address. Well-researched
obstacles to equity in other subjects include stereotype threat (Steele, Spencer, & Aronson, 2002),
implicit (Greenwald & Krieger, 2006) or unconscious biases (Pollard-Sacks, 1999), and fixed mindsets
(Dweck, 2000); their influence applies to computer science as well (Cutts, Cutts, Draper, O'Donnell, &
Saffrey, 2010; Kumar, 2012; Simon et al., 2008). For example, if tutors teach students about mindsets
and give them growth mindset messages on their work, test scores could improve, and stereotype
threat could be mitigated (Cutts et al., 2010). Stereotype threat can be mitigated by altering the
wording of test questions to be gender-neutral and using examples that are equally relevant to both
males and females (Kumar, 2012). It is also important for students to have diverse role models in the
field so that they can imagine themselves as a computer scientist, as well as to dispel stereotypes of
what computer scientists look and act like (Goode, 2008).

Other practices that teachers can adopt and adapt to change classroom culture include

• practicing culturally relevant pedagogy that brings computer science together with students’
experiences, culture, and interests (Margolis et al., 2014);

• developing relationships with students that are respectful of different backgrounds and
empathetic to different needs and interests (Margolis et al., 2014);

• reflecting on beliefs and actions to address stereotypes among students and teachers alike
(Margolis et al., 2014);

• applying instructional strategies that support struggling learners and those with disabilities in
other content areas within computer science education (e.g., if verbal prompting helps in math
instruction, it will likely help in computer science instruction as well) (Snodgrass, Israel, & Reese,
2016); and

• connecting computer science to concepts that motivate children, like fairness and social justice
(Denner, Martinez, Thiry, & Adams, 2015).

Summary
A focus on equity, inclusion, and diversity in all aspects of
computer science education will ensure that implementation
efforts remain true to the framework’s vision of computer science
for all students. The structure and content of the framework
reflect an attention to equity issues and provide a solid
foundation for reforming computer science education. There are
many current efforts to promote computer science to diverse
populations, including young students, novices, students with
disabilities, females, and underrepresented minorities.

A focus on equity will
ensure that efforts
remain true to the vision
of computer science
for all students.

36 K–12 Computer Science Framework

Equity in Computer Science Education

References
AccessCS10K. (2016). Including students with disabilities in computing education for the 21st century. Retrieved from

http://www.washington.edu/accesscomputing/accesscs10k

Bootstrap. (2016). From intro CS & Algebra to high-level courses in computer science, for all students. Retrieved from
http://www.bootstrapworld.org/

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking.
Paper session presented at the annual meeting of the American Educational Research Association, Vancouver, Canada.

Bureau of Labor Statistics. (2015a). Employment projections [Data file]. Retrieved from http://www.bls.gov/emp/tables.htm

Bureau of Labor Statistics. (2015b). Labor force statistics from the Current Population Survey [Data file]. Retrieved from
http://www.bls.gov/cps

Bureau of Labor Statistics. (2015c). Occupational employment statistics [Data file]. Retrieved from http://www.bls.gov/oes

Burning Glass Technologies. (2016). Beyond point and click: The expanding demand for coding skills. Retrieved from
http://burning-glass.com/research/coding-skills/

Change the Equation. (2016, August 9). New data: Bridging the computer science access gap [Blog post]. Retrieved from
http://changetheequation.org/blog/new-data-bridging-computer-science-access-gap-0

Code.org. (2016). Computer Science Fundamentals for elementary school. Retrieved from https://code.org/educate/
curriculum/elementary-school

College Board. (2014). The tenth annual AP report to the nation. Retrieved from http://media.collegeboard.com/
digitalServices/pdf/ap/rtn/10th-annual/10th-annual-ap-report-to-the-nation-single-page.pdf

College Board. (2016). AP program participation and performance data 2015 [Data file]. Retrieved from
https://research.collegeboard.org/programs/ap/data/participation/ap-2015

The Conference Board. (2016). National demand rate and OES employment data by occupation [Data file]. Retrieved from
https://www.conference-board.org/

Creative Technology Research Lab. (2016). CTRL-Shift: Shifting education. Retrieved from
http://ctrlshift.mste.illinois.edu/home/

CS Unplugged. (2016). Retrieved from http://csunplugged.org/

Cutts, Q., Cutts, E., Draper, S., O’Donnell, P., & Saffrey, P. (2010, March). Manipulating mindset to positively influence
introductory programming performance. In Proceedings of the 41st ACM Technical Symposium on Computer Science
Education (pp. 431–435). doi: 10.1145/1734263.1734409

Denner, J., Martinez, J., Thiry, H., & Adams, J. (2015). Computer science and fairness: Integrating a social justice perspective
into an after school program. Science Education and Civic Engagement: An International Journal, 6(2): 41–54.

Denner, J., Werner, L., Campe, S., & Ortiz, E. (2014). Pair programming: Under what conditions is it advantageous for middle
school students? Journal of Research on Technology in Education, 46(3), 277–296.

Dweck, C. S. (2000). Self-theories: Their role in motivation, personality, and development. Philadelphia, PA: Psychology Press.

Eglash, R., Gilbert, J. E., & Foster, E. (2013). Toward culturally responsive computing education. Communications of the ACM,
56(7), 33–36.

Elkin, M., Sullivan, A., & Bers, M. U. (2014). Implementing a robotics curriculum in an early childhood Montessori classroom.
Journal of Information Technology Education: Innovations in Practice, 13, 153–169.

Exploring Computer Science. (2016). Retrieved from http://www.exploringcs.org/

Goode, J. (2008, March). Increasing diversity in K–12 computer science: Strategies from the field. ACM SIGCSE Bulletin, 40(1),
362–366.

http://www.washington.edu/accesscomputing/accesscs10k
http://www.bootstrapworld.org/
http://www.bootstrapworld.org/
http://www.bls.gov/emp/tables.htm
http://www.bls.gov/cps
http://www.bls.gov/oes
http://burning-glass.com/research/coding
http://changetheequation.org/blog/new-data-bridging-computer-science-access-gap-0
https://code.org/educate/curriculum/elementary-school
https://code.org/educate/curriculum/elementary-school
https://code.org/educate/curriculum/elementary-school
http://media.collegeboard.com/digitalServices/pdf/ap/rtn/10th-annual/10th-annual-ap-report-to-the-nation-single-page.pdf
http://media.collegeboard.com/digitalServices/pdf/ap/rtn/10th-annual/10th-annual-ap-report-to-the-nation-single-page.pdf
https://research.collegeboard.org/programs/ap/data/participation/ap-2015
https://www.conference-board.org/
http://ctrlshift.mste.illinois.edu/home
http://csunplugged.org/
http://csunplugged.org/
http://www.jite.org/documents/Vol13/JITEv13IIPvp153-169Elkin882.pdf
http://www.exploringcs.org/
http://www.exploringcs.org/

K–12 Computer Science Framework 37

Equity in Computer Science Education

Goode, J., Estrella, R., & Margolis, J. (2006). Lost in translation: Gender and high school computer science. In W. Aspray & J.
M. Cohoon (Eds.), Women and Information Technology: Research on Underrepresentation (pp. 89–113). Cambridge, MA:
MIT Press.

Google & Gallup. (2015a). Images of computer science: Perceptions among students, parents, and educators in the U.S.
Retrieved from http://g.co/cseduresearch

Google & Gallup. (2015b). Searching for computer science: Access and barriers in U.S. K–12 education. Retrieved from
http://g.co/cseduresearch

Greenwald, A. G., & Krieger, L. H. (2006). Implicit bias: Scientific foundations. California Law Review, 94(4), 945–967.

Hansen, A., Hansen, E., Dwyer, H., Harlow, D., & Franklin, D. (2016). Differentiating for diversity: Using universal design for
learning in computer science education. In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education (pp. 376–381).

Horizon Media. (2015, October 5). Horizon Media study reveals Americans prioritize STEM subjects over the arts; science is
“cool,” coding is new literacy. PR Newswire. Retrieved from http://www.prnewswire.com/news-releases/horizon-media-
study-reveals-americans-prioritize-stem-subjects-over-the-arts-science-is-cool-coding-is-new-literacy-300154137.html

Hu, H. H., Heiner, C., & McCarthy, J. (2016, February). Deploying Exploring Computer Science statewide. In Proceedings of
the 47th ACM Technical Symposium on Computing Science Education (pp. 72–77).

Kafai, Y. B., & Burke, Q. (2014). Connected code: Why children need to learn programming. Cambridge, MA: The MIT Press.

Kumar, A. N. (2012, July). A study of stereotype threat in computer science. In Proceedings of the 17th ACM Annual
Conference on Innovation and Technology in Computer Science Education (pp. 273–278).

Ladner, R., & Israel, M. (2016). “For all” in “computer science for all.” Communications of the ACM, 59(9), 26–28.

Lewis, C. M., & Shah, N. (2015, July). How equity and inequity can emerge in pair programming. In Proceedings of the
Eleventh Annual International Conference on International Computing Education Research (pp. 41–50).

Lincoln Public Schools. (2016). Computer science. Retrieved from http://home.lps.org/computerscience/

Margolis, J., Estrella, R., Goode, J., Holme, J. J., & Nao, K. (2010). Stuck in the shallow end: Education, race, and computing.
Cambridge, MA: MIT Press.

Margolis, J., Goode, J., & Chapman, G. (2015). An equity lens for scaling: A critical juncture for exploring computer science.
ACM Inroads, 6(3), 58–66.

Margolis, J., Goode, J., Chapman, G., & Ryoo, J. J. (2014). That classroom ‘magic.’ Communications of the ACM, 57(7),
31–33.

Margolis, J., Ryoo, J., Sandoval, C., Lee, C., Goode, J., & Chapman, G. (2012). Beyond access: Broadening participation in
high school computer science. ACM Inroads, 3(4), 72–78.

Morgan, R., & Klaric, J. (2007). AP students in college: An analysis of five-year academic careers. Research report no. 2007-4.
Retrieved from the College Board website: http://research.collegeboard.org/sites/default/files/publications/2012/7/
researchreport-2007-4-ap-students-college-analysis-five-year-academic-careers.pdf

National Center for Education Statistics. (2014). Integrated postsecondary education data system [Data file]. Retrieved from
http://nces.ed.gov/ipeds/

National Center for Education Statistics. (2016). Children and youth with disabilities. Retrieved from
http://nces.ed.gov/programs/coe/indicator_cgg.asp

National Science Foundation. (2015). Women, minorities, and persons with disabilities in science and engineering. Arlington,
VA: Author.

New York City Department of Education. (2016). Software engineering program (SEP) Jr. Retrieved from
http://sepnyc.org/sepjr/

http://g.co/cseduresearch
http://g.co/cseduresearch
http://www.prnewswire.com/news-releases/horizon-media-study-reveals-americans-prioritize-stem-subjects-over-the-arts-science-is-cool-coding-is-new-literacy-300154137.html
http://www.prnewswire.com/news-releases/horizon-media-study-reveals-americans-prioritize-stem-subjects-over-the-arts-science-is-cool-coding-is-new-literacy-300154137.html
http://home.lps.org/computerscience/
http://home.lps.org/computerscience/
http://research.collegeboard.org/sites/default/files/publications/2012/7/researchreport-2007-4-ap-students-college-analysis-five-year-academic-careers.pdf
http://research.collegeboard.org/sites/default/files/publications/2012/7/researchreport-2007-4-ap-students-college-analysis-five-year-academic-careers.pdf
http://nces.ed.gov/ipeds
http://nces.ed.gov/programs/coe/indicator_cgg.asp
http://sepnyc.org/sepjr/
http://sepnyc.org/sepjr/

38 K–12 Computer Science Framework

Equity in Computer Science Education

Pollard-Sacks, D. (1999). Unconscious bias and self-critical analysis: The case for a qualified evidentiary equal employment
opportunity privilege. Washington Law Review, 74, 913–1032.

Project GUTS: Growing Up Thinking Scientifically. (2016). Retrieved from http://www.projectguts.org/.

Project Lead The Way. (2016). PLTW launch (K–5). Retrieved from https://www.pltw.org/our-programs/pltw-launch.

Quorum. (2016). About Quorum. Retrieved from https://www.quorumlanguage.com/about.php

San Francisco Unified School District. (2016). Computer science for all students in SF. http://www.csinsf.org/

Shah, N., Lewis, C. M., Caires, R., Khan, N., Qureshi, A., Ehsanipour, D., & Gupta, N. (2013, March). Building equitable
computer science classrooms: Elements of a teaching approach. In Proceedings of the 44th ACM Technical Symposium on
Computer Science Education (pp. 263–268).

Simon, B., Hanks, B., Murphy, L., Fitzgerald, S., McCauley, R., Thomas, L., & Zander, C. (2008, September). Saying isn’t
necessarily believing: Influencing self-theories in computing. In Proceedings of the Fourth International Workshop on
Computing Education Research (pp. 173–184).

Snodgrass, M. R., Israel, M., & Reese, G. (2016). Instructional supports for students with disabilities in K–5 computing: Findings
from a cross-case analysis. Computers & Education, 100, 1–17.

Steele, C. M., Spencer, S. J., & Aronson, J. (2002). Contending with group image: The psychology of stereotype and social
identity threat. Advances in Experimental Social Psychology, 34, 379–440.

Strawhacker, A. L., & Bers, M. U. (2014, August). ScratchJr: Computer programming in early childhood education as a pathway
to academic readiness and success. Poster presented at DR K–12 PI Meeting, Washington, DC.

University of Nebraska at Omaha. (2016). ITEST strategic problem-based approach to rouse computer science (SPARCS).
Retrieved from http://www.unomaha.edu/college-of-information-science-and-technology/itest/index.php

Watkins, K. Z., & Watkins, M. J. (2009). Towards minimizing pair incompatibilities to help retain under-represented groups in
beginning programming courses using pair programming. Journal of Computing Sciences in Colleges, 25(2), 221–227.

http://www.projectguts.org/
http://www.projectguts.org/
https://www.pltw.org/our-programs/pltw-launch
https://www.pltw.org/our-programs/pltw-launch
https://www.quorumlanguage.com/about.php
https://www.quorumlanguage.com/about.php
http://www.csinsf.org/
http://www.csinsf.org/
http://www.unomaha.edu/college-of-information-science-and-technology/itest/index.php
http://www.unomaha.edu/college-of-information-science-and-technology/itest/index.php

Development Process

K-12 Computer Science Framework 41

3
Development Process

The development of the K–12 Computer Science Framework brought together educators,
practitioners, researchers, organizations, and state- and district-level stakeholders to delineate
concepts and practices in computer science for all students from kindergarten to 12th grade in the
United States. This project was guided by a steering committee with representation from the
Association for Computing Machinery (ACM), Code.org, Computer Science Teachers Association
(CSTA), Cyber Innovation Center (CIC), and the National Math and Science Initiative (NMSI).

A variety of organizations played special roles during the development process. Achieve; the Maine
Mathematics and Science Alliance; and staff of the Board on Science Education at the National
Academies of Science, Engineering, and Medicine applied their experiences with state and national
education frameworks to inform the K–12 Computer Science Framework’s structure, grade-band
expectations, and development process. Outlier Research & Evaluation in UChicago STEM Education
at the University of Chicago documented the various meetings, convenings, and workshops; meeting
summaries are available at k12cs.org.

The states that participated in the development of the K–12 Computer Science Framework were
either currently engaged in or planning to begin the implementation of K–12 computer science.
These states included Arkansas, California, Georgia, Idaho, Indiana, Iowa, Maryland, Massachusetts,
Nebraska, Nevada, New Jersey, North Carolina, Utah, and Washington. School districts in Chicago (IL),
New York City (NY), San Francisco (CA), and Charles County (MD) also participated. Each of the states
and districts that committed to the project was asked to select a writer to represent the state on the
writing team. State-level teams reviewed the framework and participated in convenings during the
framework development process.

http://k12cs.org

42 K–12 Computer Science Framework

Development Process

The development timeline consisted of a series of meetings with advisors, writers, and stakeholders
from October 2015 to October 2016. The three advisor meetings focused on articulating the guiding
vision and principles of the K–12 Computer Science Framework, identifying the core concepts and
practices, and providing feedback during the development process. Over the course of two stake-
holder convenings, one to launch the framework project and one at the midpoint, participants offered
input, received development updates, and engaged in discussions around common computer science
implementation issues. The seven writer workshops were opportunities for writers to collaborate in
person and revise drafts of the framework based on public feedback. Writers and advisors held
scheduled video conferences between the in-person gatherings. There were a total of three public
review periods, as well as multiple internal reviews and focus groups covering special topics such as
curriculum, computational thinking, and developmental appropriateness (including early childhood
education).

This chapter details how the framework project began, how the community was involved, and how
each part of the framework was developed.

K–12 Computer Science Framework 43

Development Process

Beginnings of the Framework
The impetus to develop the framework came from a mutual interest in K–12 computer science
expressed by multiple states. With surging attention from schools, parents, and students across the
nation, states were increasingly asking, “What should students be able to know and do in a K–12
computer science pathway? What does computer science look like in elementary, middle, and high
school?” The K–12 Computer Science Framework represents a response to the growing need for
state-focused guidance that reflects the consensus of a wide and diverse range of computer science
practitioners, researchers, and organizations. Many of these states were wary of engaging in another
wave of national education standards similar to those in mathematics, language arts, and science,
reflecting the pace and politics of standards-based education reform over the last several years. Some
states expressed fatigue from these national standards efforts and the desire for more flexible,
high-level guidelines for K–12 computer science by which they could eventually create their own,
state-developed guidance.

The framework builds upon previous publications that describe detailed expectations for K–12
computer science education in the U.S.: A Model Curriculum for K–12 Computer Science, 2nd edition
(Tucker et al., 2006) and the CSTA K–12 Computer Science Standards (CSTA Standards Task Force,
2011). The two organizations behind these documents, the ACM and CSTA, joined with Code.org, a
national nonprofit organization promoting
computer science education, to form the initial
steering committee for the K–12 Computer
Science Framework, which would later include CIC
and NMSI. The steering committee was charged
with guiding the framework development process;
overseeing the review process to ensure multiple
opportunities for diverse community involvement;
increasing coherence among the framework,
standards, and other related documents; and
representing the project to increase public awareness. Code.org provided staff to direct the
development of the framework and manage the process. The project was funded by the ACM,
Code.org, and NMSI. See a timeline of the project in Figure 3.1.

The CSTA began a scheduled revision to its 2011 standards at the same time the framework’s
development process began. With two related, yet independent processes being undertaken in
parallel in the computer science education community, it was important to ensure that the community
was speaking with a coherent and consistent voice to national stakeholders. To improve alignment
between the two projects, the co-chairs of the CSTA standards revision served as advisors to the
K–12 Computer Science Framework, and all of the CSTA standards writers were asked to be writers of
the framework, with eventually half accepting the role. In this way, both documents informed and

The framework builds upon
previous publications that describe
detailed expectations for K–12
computer science education.

44 K–12 Computer Science Framework

Development Process

supported each other. An interim version of the revised CSTA standards was released in July 2016 and
was informed by multiple inputs, including drafts of the K–12 Computer Science Framework during
the development process.

Figure 3.1: Framework development process

O C T O B E R

F E B R U A R Y

J U N E

 Advisor
Workshop 1

 Review
Period 1

 Review
Period 3

 Advisor
Workshop 2

 Writer
Workshop 3

 Writer
Workshop 6

 Writing

 Writer
Workshop 4

 Writer
Workshop 7

 Writer
Workshop 2

 Writer
Workshop 5

 Writing

 Stakeholder
Convening 1

 Stakeholder
Convening 2

 Review
Period 2

 Writer
Workshop 1

N O V E M B E R

M A R C H

J U LY

D E C E M B E R

A P R I L

A U G U S T

J A N U A R Y

M AY

S E P T E M B E R

Release on k12cs.org

O C T O B E R

K–12 Computer Science Framework 45

Development Process

Community Involvement
The 27 writers of the framework represented the research
community, K–12 education, professional associations,
nonprofit organizations, state and district departments of
education, and industry. The writing team was diverse based
on grade-level experience and content expertise as well
as gender, race, ethnicity, state, rural/urban/suburban
experience, and institutional representation (nonprofit,
research, industry, public/private education). Writers were
assigned to teams based on their grade-level experience and
content expertise. The five core concept teams and one
practice team were composed of writers, a lead writer, and a facilitator.

There were also 25 advisors, representing K–12 and higher education, who were involved in initial
meetings to identify the core concepts and practices of the framework and provided feedback during
the development process. The advisors were practitioners and researchers who represented bodies of
work and expertise that were valuable to the development of the framework. Advisors participated in
internal reviews and worked closely with the development staff and writing teams to inform key
content areas, provide research grounding, and help resolve content issues during development.

A variety of critical stakeholders were involved in the development of the framework. Participating
states were represented by staff from the state department of education and/or members of the state
board of education. Districts were represented by computer science coordinators and specialists.
Representatives from industry, nonprofit organizations, research institutions, and national education
organizations provided key input during stakeholder convenings.

Public review and feedback were essential to the development of the framework. A total of three
drafts of the framework were shared for public comment in addition to a number of internal drafts
that were shared with the framework’s advisors. Reviews were submitted by groups and individuals
representing most of the nation’s states and seven international locations. Special focus groups were
held to collect detailed feedback on topics that writers wanted input on and to assess the needs of
particular audiences. Focus group participants and reviewers were from the computer science
education community as well as the general education community and represented a variety of roles
in education, such as teachers, administrators, higher education faculty, researchers, curriculum
specialists, and technology coaches. At the end of each review period, the development staff
reviewed all the input, identified major themes, and provided recommendations to the writing team.
More information about the review process, the feedback received, and subsequent revisions can be
found in Appendix A: Feedback and Revisions.

There were 27 writers
and 25 advisors
representing states,
districts, K–12, industry,
and nonprofits.

46 K–12 Computer Science Framework

Development Process

Structure
The decision to organize the framework by concepts and practices was based on the desire to align
to and complement the structure of broadly adopted education frameworks for subjects such as
math, science, and language arts. Particularly, the National Research Council’s (NRC) Framework for
K–12 Science Education (2012) served as a model and precedent. The NRC Framework has three
dimensions: Disciplinary Core Ideas, Scientific and Engineering Practices, and Crosscutting Concepts.
The K–12 Computer Science Framework shares two similar dimensions, in the form of core concepts
and practices. Crosscutting concepts are not an explicit, third dimension in the K–12 Computer
Science Framework but are integrated across the core concepts. The grade-band endpoints (Grades
2, 5, 8, and 12) for the K–12 Computer Science Framework concepts are also modeled off those of the
NRC Framework and represent key stages of education, including recognition of the developmental
difference between lower and upper elementary school students.

Core Concepts
The core concepts of the K–12 Computer Science Framework are categories that represent major
content areas in the field of computer science. They represent specific areas of disciplinary importance
rather than abstract, general ideas. This approach recognizes the importance of using specific content
and context to organize bodies of knowledge (NRC, 2007), such as data, networks, and programming,
over domain-general ideas such as abstraction and computational thinking. In a discussion about
learning progressions in science, the NRC reported that a “disciplinary approach fits with the
increasing recognition of the importance of specific content and context in thinking and learning
and the power of theories to define and organize understandings of particular domains, something
that domain-general ideas by their nature don’t have the power to do” (NRC, 2007, p. 223). The
criteria for selection of a core concept was that it should

K–12 Computer Science Framework 47

Development Process

• have broad significance across the field of computer science;
• serve as a useful foundation for learning or building to other ideas in computer science;
• allow young students to engage with the idea (low threshold), yet preserve the potential for

progressive elaboration and sophistication (high ceiling);
• be applicable within other K–12 subjects and disciplines; and
• remain relevant in computer science over the next five to ten years, at minimum.

The core concepts of the framework:

1. Computing Systems
2. Networks and the Internet
3. Data and Analysis
4. Algorithms and Programming
5. Impacts of Computing

Writers identified subconcepts within each of the core concepts and used them to create focused,
coherent learning progressions that span kindergarten to Grade 12. The selection of core concepts and
subconcepts was informed by related K–12 computer science documents, including the ACM Model
K–12 Curriculum (Tucker et al., 2006); the CSTA 2011 standards; the Advanced Placement® Computer
Science Principles curriculum framework (College Board, 2016); the Denning Institute’s Great Principles
of Computing (Denning & Martell, 2015); and international frameworks, such as the United Kingdom’s
national computing program of study (England Department for Education, 2013). Frameworks from
related disciplines, such as cybersecurity, digital citizenship, and technology literacy, also informed the
learning progressions. The framework writers’ experience and expertise with diverse populations of
students proved invaluable when determining what ideas were essential for
all students.

A learning progression describes conceptual milestones along a path that move from basic
understanding to more sophisticated knowledge in a subject area. The framework’s subconcepts
provide a focal point for these learning progressions to connect learning across grades and articulate the
essential ideas under each core concept (Hess, 2008). Rather than prioritizing the coverage of a wide
range of content, the framework’s learning progressions
deliberately revisit a subconcept across multiple grade
bands with evolving sophistication. For example, the
learning progression for modularity in the Algorithms and
Programming core concept begins with the simple under-
standing that tasks can be broken down into smaller tasks
and that programs can be composed of parts of other
programs. Eventually, students understand that a program is
a system of interacting modules, including other programs.

Cybersecurity, digital
citizenship, and technology
literacy informed the
framework's learning
progressions.

48 K–12 Computer Science Framework

Development Process

The K–12 Computer Science Framework employed principles
used in the construction and research of learning progressions,
such as identifying emergent core ideas that can be introduced
early in a child’s education and elaborated on over multiple
years (NRC, 2007). Where specific computer science research
was lacking, especially in early grade bands, related science
and math research was used to approximate the appropriate
computer science progressions and guide the placement of
concepts in particular grade bands. For example, procedural
abstraction, in which procedures use variables as parameters to
generalize behavior, was placed as an expectation by the end
of eighth grade in the core concept of Algorithms and
Programming based on the placement of a related concept in learning progressions for mathematics—
writing equations with variables in the middle grades. Other examples of relying on learning progres-
sions from other disciplines include using science learning progressions to inform the placement of
concepts shared with computer science, such as models and simulations, and analogous concepts, such
as bits (basic units of digital information) and particles/atoms.

It should be noted that the effectiveness of the framework’s learning progressions will be significantly
influenced by teachers’ pedagogical practices, as traditional methods of teaching computer science
may not enable all students to meet the framework’s expectations. Additionally, the framework’s
learning progressions guide, but do not fully prescribe an instructional sequence—there are flexible
paths for moving between the expectations at the end of each grade band.

Crosscutting Concepts
As mentioned previously, the core concepts of the K–12 Computer Science Framework represent
specific areas of disciplinary importance rather than abstract, domain-general ideas. The latter formed
the basis of the framework’s crosscutting concepts, ideas that have application across the different
core concepts and are integrated into concept statements. These “crosscutting concepts” provide
thematic connections across the core concepts. The criteria for selection of a crosscutting concept was
that it should

• apply across multiple core concepts,
• illuminate connections between different core concepts of computer science,
• build familiarity with fundamental themes in computer science through repetition in different

contexts, and
• create a richer understanding of a concept statement in which it is integrated.

A learning progression
describes conceptual
milestones along a path
that move from basic
understanding to more
sophisticated knowledge
in a subject area.

K–12 Computer Science Framework 49

Development Process

The crosscutting concepts of the framework (listed in order of frequency in the framework):

1. Abstraction
2. System Relationships
3. Human–Computer Interaction
4. Privacy and Security
5. Communication and Coordination

Although the K–12 Computer Science Framework and the NRC Framework for K–12 Science
Education define crosscutting concepts in similar ways, the K–12 Computer Science Framework
integrates them into the learning progressions under each core concept rather than as a separate
third dimension alongside the core concepts and practices. This integration was done for two main
reasons. First, it was decided that integrating them into the existing dimension of core concepts
would preserve their value and influence while making it
easier for the audience of the framework to understand and
implement the framework. Second, the research base and
practitioner experience with crosscutting concepts in comput-
er science did not provide enough information to create a
separate learning progression for crosscutting concepts.

The crosscutting concepts served as an internal writing tool
during the development process, and the list evolved based
on feedback and as writing progressed. Writers intentionally
integrated crosscutting concepts into the concept statements
during the writing process. Toward the end of the development process, a small team of writers went
through the entire framework and tagged concept statements by particular crosscutting concepts and
also suggested revisions to concept statements to create a stronger and more explicit integration with
a crosscutting concept. The crosscutting concepts listed in the descriptive material for each concept
statement are not the only connections that can be made—just the ones that are the most relevant.
In addition, some crosscutting concepts are more obvious than others, but all of them provide
opportunities for illuminating key themes in computer science that cut across the five core concepts of
the framework. Users of the framework should decide the depth to which a crosscutting concept is
emphasized when a concept statement is being addressed.

The following examples illustrate the crosscutting concept System Relationships in statements
from different core concept areas. An expectation by the end of 12th grade in the Algorithms and
Programming core concept begins, “Complex programs are designed as systems of interacting
modules, each with a specific role, coordinating for a common overall purpose. These modules
can be procedures within a program; combinations of data and procedures; or independent, but
interrelated, programs” (9–12.Algorithms and Programming.Modularity). This example illustrates how

The framework
integrates crosscutting
concepts under each core
concept rather than as a
third dimension.

50 K–12 Computer Science Framework

Development Process

the different parts of a program create a system and interact for a common purpose. In the Data and
Analysis core concept, by the end of 12th grade, students are expected to understand the following:
“Data can be composed of multiple data elements that relate to one another. . . . People make
choices about how data elements are organized and where data is stored” (9–12.Data and Analysis.
Storage). This statement applies the idea of systems to organizations of data and the relationships
among different data elements. Most obviously, the idea of systems comes up often in the Computing
Systems core concept: “Levels of interaction exist between the hardware, software, and user of a
computing system. The most common levels of software that a user interacts with include system
software and applications” (9–12.Computing Systems.Hardware and Software). This statement
describes the role of system software as well as the relationships among the hardware, software,
and user in a computing system. These three examples show the power of a crosscutting concept to
illuminate a key aspect of computer science across the core concepts of the framework.

Detailed descriptions of each crosscutting concept can be found in the preface of the Concepts
chapter.

Connections Within the Framework
Many concept statements in the framework relate to other concept statements, whether in the same
grade band or a different one. Writing teams assigned to particular concepts intentionally worked with
other teams to align content across the framework. The bolded phrases in Figure 3.2 highlight the
relationship between the concept statement at the 9–12 grade band of the Networks and the Internet
core concept (hierarchy in the Internet) and the statement in the same grade band of the Computing
Systems core concept (layers of interaction in hardware and software).

Figure 3.2: Example of connection between two concepts in the same grade band

9–12.Networks and the Internet.Network

Communication and Organization

9–12.Computing Systems.Hardware
and Software

Network topology is determined, in part, by
how many devices can be supported. Each
device is assigned an address that uniquely
identifies it on the network. The scalability and
reliability of the Internet are enabled by the
hierarchy and redundancy in networks.

Levels of interaction exist between the
hardware, software, and user of a
computing system. The most common levels
of software that a user interacts with include
system software and applications. System
software controls the flow of information
between hardware components used for
input, output, storage, and processing.

http://12.Data

K–12 Computer Science Framework 51

Development Process

Connections also exist between statements in different grade bands and describe how one concept
may build to another. For example, the concept statement at the end of the K–2 grade band of the
Algorithms and Programming core concept (programs are developed to express ideas and address
problems) provides a foundation for understanding a statement at the end of the 3–5 grade band of
the Impacts of Computing core concept (development of computing technology is driven by people’s
needs and wants and influences cultural practices). See Figure 3.3 for details.

Figure 3.3: Example of connection between two concepts in different grade bands

K–2.Algorithms and Programming.Program
Development

3–5.Impacts of Computing.Culture

People develop programs collaboratively and
for a purpose, such as expressing ideas or
addressing problems.

The development and modification of com-
puting technology is driven by people’s
needs and wants and can affect groups
differently. Computing technologies influence,
and are influenced by, cultural practices.

Concept statements within the same grade band and core concept are inherently connected. For
example, the Modularity and Program Development concept statements for the 3–5 grade band in
Algorithms and Programming are related (see Figure 3.4).

Figure 3.4: Example of connection between two statements in the same core concept and grade band

3–5.Algorithms and Programming.
Modularity

3–5.Algorithms and Programming.Program
Development

Programs can be broken down into smaller
parts to facilitate their design, implementation,
and review. Programs can also be created by
incorporating smaller portions of programs
that have already been created.

People develop programs using an iterative
process involving design, implementation, and
review. Design often involves reusing exist-
ing code or remixing other programs within
a community. People continuously review
whether programs work as expected, and they
fix, or debug, parts that do not. Repeating
these steps enables people to refine and
improve programs.

http://5.Algorithms
http://5.Algorithms

52 K–12 Computer Science Framework

Development Process

Core Practices
The K–12 Computer Science Framework’s practices are the behaviors that computationally literate
students use to fully engage with the core concepts of computer science. Concepts and practices are
integrated to provide complete experiences for students engaging in computer science. The criteria
for selection of a practice was that it should

• capture important behaviors that computer scientists engage in,
• be helpful to fully explore and understand the framework concepts,
• help students engage with course content through the development of artifacts, and
• be based on processes and proficiencies with importance in computer science.

Like the core concepts of the framework, the framework’s
practices were also informed by the descriptions of practices
in national frameworks and standards in other subjects. The
practices intentionally overlap with those in other disciplines
and use similar language to help teachers make connections
between computer science and disciplines they are more
familiar with and to make the framework more accessible to a
wide audience.

The core practices of the framework:

1. Fostering an Inclusive Computing Culture
2. Collaborating Around Computing
3. Recognizing and Defining Computational Problems
4. Developing and Using Abstractions
5. Creating Computational Artifacts
6. Testing and Refining Computational Artifacts
7. Communicating About Computing

Computational thinking plays a key role in the computer science practices of the framework as it
encompasses practices 3, 4, 5, and 6. Practices 1, 2, and 7 are independent, general practices in
computer science that complement computational thinking. Multiple research articles and documents
informed the delineation of computational thinking practices, such as Operational Definition of
Computational Thinking for K–12 Education (ISTE & CSTA, 2011) and Assessment Design Patterns for
Computational Thinking Practices in Secondary Computer Science (Bienkowski, Snow, Rutstein, &
Grover, 2015).

The practices intentionally
overlap with those in
other disciplines and use
similar language.

K–12 Computer Science Framework 53

The practice statements delineate specific expectations by the end of 12th grade and are followed by
a narrative that describes the progression leading to those end points. This structure differs from the
grade-band delineation of the core concepts because the current research base and practitioner
experience with practices in computer science do not provide enough information to create clear,
grade-banded expectations. The narratives describe the practice progressions in a manner that is less
prescriptive about developmental appropriateness to emphasize flexible expectations.

Development Process

54 K–12 Computer Science Framework

Development Process

References
Bienkowski, M., Snow, E., Rutstein, D. W., & Grover, S. (2015). Assessment design patterns for computational thinking

practices in secondary computer science: A first look (SRI technical report). Menlo Park, CA: SRI International. Retrieved
from http://pact.sri.com/resources.html

College Board. (2016). AP Computer Science Principles course and exam description. New York, NY: College Board.
Retrieved from https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-
principles-course-and-exam-description.pdf

Computer Science Teachers Association Standards Task Force. (2011). CSTA K–12 computer science standards, revised 2011.
New York, NY: Computer Science Teachers Association and Association for Computing Machinery. Retrieved from
http://www.csteachers.org/resource/resmgr/Docs/Standards/CSTA_K-12_CSS.pdf

Denning, P. J., & Martell, C. (2015). Great principles of computing. Cambridge, MA: MIT Press.

England Department for Education. (2013, September 11). National curriculum in England: Computing programmes of study.
Retrieved from https://www.gov.uk/government/publications/national-curriculum-in-england-computing-
programmes-of-study/national-curriculum-in-england-computing-programmes-of-study

Hess, K. (2008). Developing and using learning progressions as a schema for measuring progress. Dover, NH: National Center
for the Improvement of Educational Assessment. Retrieved from http://www.nciea.org/publications/CCSSO2_KH08.pdf

International Society for Technology in Education & Computer Science Teachers Association. (2011). Operational definition of
computational thinking for K–12 education. Retrieved from https://csta.acm.org/Curriculum/sub/CurrFiles/
CompThinkingFlyer.pdf

National Research Council. (2007). Taking science to school: Learning and teaching science in grades K–8. Committee on
Science Learning-Kindergarten Through Eighth Grade. R. A. Duschl, H. A. Schweingruber, & A. W. Shouse (Eds.). Board on
Science Education, Center for Education. Division of Behavioral and Social Sciences and Education. Washington, DC: The
National Academies Press.

National Research Council. (2012). A framework for K–12 science education: Practices, crosscutting concepts, and core ideas.
Committee on a Conceptual Framework for New K–12 Science Education Standards. Board on Science Education, Division
of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.

Tucker, A., McCowan, D., Deek, F., Stephenson, C., Jones, J., & Verno, A. (2006). A model curriculum for K–12 computer science:
Report of the ACM K–12 task force curriculum committee (2nd ed.). New York, NY: Association for Computing Machinery.

http://pact.sri.com/resources.html
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
http://www.csteachers.org/resource/resmgr/Docs/Standards/CSTA_K-12_CSS.pdf
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
http://www.nciea.org/publications/CCSSO2_KH08.pdf
https://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf
https://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf

Navigating the Framework

K-12 Computer Science Framework 57

4
Navigating the Framework

The purpose of this chapter is to help you navigate the parts of the framework. First, this chapter
describes the content of the framework, which is chiefly made up of practices, concepts, and guidance
chapters. Second, this chapter explains the different ways you can view the framework online so that you
can have the information organized according to your purpose.

Practices
The K–12 Computer Science Framework’s practices are the behaviors that computationally literate
students use to fully engage with the core concepts of computer science. Concepts and practices
are integrated to provide complete experiences for students engaging in computer science. While
the practices naturally integrate and overlap with one another, they are displayed in an order that
suggests a process for developing computational artifacts. Four of the practices are also called out
as aspects of computational thinking.

There are seven core practices:

1. Fostering an Inclusive Computing Culture
2. Collaborating Around Computing
3. Recognizing and Defining Computational Problems
4. Developing and Using Abstractions
5. Creating Computational Artifacts
6. Testing and Refining Computational Artifacts
7. Communicating About Computing

58 K–12 Computer Science Framework

Navigating the Framework

How to Read the Practices
Figure 4.1: How to read the practices

Each practice contains three parts: (1) overview, (2) practice statement, and (3) progression.

1. The overview describes the practice.
2. The practice statement describes what students should be able to do when exiting Grade 12.
3. The progression under each goal describes how students should be exhibiting the specific

practice with increasing sophistication from kindergarten to Grade 12. Rather than grade bands,
the progressions use a narrative format to emphasize the different paths students may take in
their development of the practices. The examples in the progressions describe what all students
could do but are not mandatory.

How to Refer to the Practices
When referring to a particular practice statement, use the following notation:

P[Practice Number].[Core Practice].[Practice Statement Number]

Examples:

• P4.Developing and Using Abstractions.1
• P2.Collaborating Around Computing.3

Core Practice

Practice Statement

Progression

Overview

K–12 Computer Science Framework 59

Navigating the Framework

When a practice statement is referenced within the narrative of another practice, it is denoted without
the name of the core practice (e.g., P4.1).

Concepts
A core concept represents a specific area of disciplinary importance in computer science. There are
five core concepts:

1. Computing Systems
2. Networks and the Internet
3. Data and Analysis
4. Algorithms and Programming
5. Impacts of Computing

Each core concept is described in an overview and delineated by multiple subconcepts that represent
the specific ideas within that core concept. For example, the Data and Analysis core concept contains
four subconcepts: Collection, Storage, Visualization and Transformation, and Inference and Models.
Subconcept overviews are provided to describe the subconcepts and summarize how learning
progresses across multiple grade bands.

How to Read the Concepts
Figure 4.2: How to read the concepts

Core ConceptSubconcept

Concept Statement

Elaboration and Examples

Boundary Statement

Crosscutting Concept

Connections Within Framework

60 K–12 Computer Science Framework

Navigating the Framework

The concept statements in the framework describe conceptual milestones at different grade-band
endpoints: Grades 2, 5, 8, and 12. Each concept statement encompasses a significant, essential idea
in computer science, and all are considered equally important.

Each concept statement is accompanied by descriptive material, including elaboration and
examples. Some concept statements also include crosscutting concepts and connections within
the framework.

1. The elaboration and examples add detail and depth to the concept statements. Boundary
statements are included to clarify what is not expected to be learned at that grade level.

2. Crosscutting concepts illuminate thematic connections across the different core concepts and
are integrated into concept statements as relevant and appropriate. When multiple crosscutting
concepts are listed under a statement, they are in order of significance rather than alphabetical
order.

 There are five crosscutting concepts:
 1. Abstraction
 2. System Relationships
 3. Human–Computer Interaction
 4. Privacy and Security
 5. Communication and Coordination
3. Connections within the framework are provided to illuminate relationships among concept

statements across different core concepts. Connections in the same grade band help guide
when concepts can be addressed together.

How to Refer to the Concepts
When referring to a particular concept statement, use the following notation: [Grade Band].[Core
Concept].[Subconcept]

Examples:

• 3–5.Impacts of Computing.Culture
• K–2.Algorithms and Programming.Program Development

K–12 Computer Science Framework 61

Navigating the Framework

Other Parts of the Framework
The entire framework document consists of concepts, practices, and guidance chapters. The
framework document also includes a glossary of key technical terms used in the concept and
practice statements (Appendix C). Other resources are available on the website, such as handouts,
with more to be posted as they are created.

Viewing the Framework
It is expected that people viewing the framework will have different goals. Therefore, the framework is
viewable online in a variety of ways to fit your needs.

The concepts and practices can be viewed online in three different views. All three views include the
practices first and then display the concepts by the selected view. All three views also allow the user
to filter by grade bands, core concepts, core practices, and crosscutting concepts.

Each view of the framework can be downloaded as a separate PDF file.

Grade Band View
Figure 4.3: Grade band view

Core Concept Subconcept

Boundary Statement

Concept Statement Elaboration and Examples

Crosscutting Concept

Connections Within Framework

62 K–12 Computer Science Framework

Navigating the Framework

Viewing by grade band allows you to view statements by grade band first. Under each grade band,
concept statements are organized by core concept and listed under the associated subconcept. This
organization is useful for a user who wants to view a single grade band, such as K–2 only or 6–8 only,
for example.

Progression View
Figure 4.4: Progression view

Viewing by progression allows you to view the concept statements organized by core concept first
and then by subconcept. This view also displays the overviews of the core concepts and subconcepts.
This view is good for seeing the progression of student understanding across the grade bands.

Core Concept Subconcept

Concept Statement

Overview

Crosscutting Concept

Connections Within Framework

Subconcept Overview

Elaboration and Examples

K–12 Computer Science Framework 63

Navigating the Framework

Concept View
Figure 4.5: Concept view

Viewing by concept allows you to see the statements organized by core concept first and then grade
band. This view is useful for getting a picture of everything students in a particular grade level would
need to know in a given core concept—for example, what a student in Grades 3–5 would need to
know in the Computing Systems core concept.

Accessing the Complete Framework
The entire framework document, with concepts, practices, and guidance chapters, is available as a
download at k12cs.org. Guidance chapters of the framework can be viewed online in an abridged
format.

Core Concept Overview Subconcept Subconcept Overview

Concept Statement

Elaboration and Examples

Crosscutting Concepts

Connections Within Framework

http://www.k12cs.org

Practices
Including Computational Thinking

K-12 Computer Science Framework 67

5
Practices Including Computational Thinking

Preface
The seven core practices of computer science describe the behaviors and ways of thinking that
computationally literate students use to fully engage in today’s data-rich and interconnected world.
The practices naturally integrate with one another and contain language that intentionally overlaps to
illuminate the connections among them. They are displayed in an order that suggests a process for
developing computational artifacts. This process is cyclical and can follow many paths; in the
framework, it begins with recognizing diverse users and valuing others’ perspectives and ends with
communicating the results to broad audiences (see Figure 5.1).

Unlike the core conacepts, the practices are not delineated by grade bands. Rather, the practices use
a narrative to describe how students should exhibit each practice with increasing sophistication from
kindergarten to Grade 12. In addition to describing the progression, these narratives also provide
some examples of the interrelatedness of the practice statements and the ways in which these
statements build upon one another.

Computational Thinking
Computational thinking is at the heart of the computer science practices and is delineated by
practices 3–6. Practices 1, 2, and 7 are independent, general practices in computer science that
complement computational thinking.

68 K–12 Computer Science Framework

Practices Including Computational Thinking

Figure 5.1: Core practices including computational thinking

Defining Computational Thinking
Computational thinking refers to the thought processes involved in expressing solutions as
computational steps or algorithms that can be carried out by a computer (Cuny, Snyder, & Wing,
2010; Aho, 2011; Lee, 2016). This definition draws on the idea of formulating problems and solutions
in a form that can be carried out by an information-processing agent (Cuny, Snyder, & Wing, 2010)
and the idea that the solutions should take the specific form of computational steps and algorithms to
be executed by a computer (Aho, 2011; Lee, 2016). Computational thinking requires understanding

PR AC T I CES

FOSTERING
AN INCLUSIVE
COMPUTING

CULTURE

COLLABORATING
AROUND

COMPUTING

RECOGNIZING
AND

DEFINING
COMPUTATIONAL

PROBLEMS

DEVELOPING
AND USING

ABSTRACTIONS

CREATING
COMPUTATIONAL

ARTIFACTS

TESTING
AND

REFINING
COMPUTATIONAL

ARTIFACTS

COMMUNICATING
ABOUT

COMPUTING

1

27

3

45

6

K–12 Computer Science Framework 69

Practices Including Computational Thinking

the capabilities of computers, formulating problems to be addressed by a computer, and designing
algorithms that a computer can execute. The most effective context and approach for developing
computational thinking is learning computer science; they are intrinsically connected.

Computational thinking is essentially a problem-solving
process that involves designing solutions that capitalize on
the power of computers; this process begins before a single
line of code is written. Computers provide benefits in terms of
memory, speed, and accuracy of execution. Computers also
require people to express their thinking in a formal structure,
such as a programming language. Similar to writing notes on
a piece of paper to “get your thoughts down,” creating a
program allows people to externalize their thoughts in a form
that can be manipulated and scrutinized. Programming allows
students to think about their thinking; by debugging a
program, students debug their own thinking (Papert, 1980).

Despite what the name implies, computational thinking is fundamentally a human ability. In other
words, “[h]umans process information; humans compute” (Wing, 2008, p. 3718). This nuance is the
basis for “unplugged” approaches to computer science (i.e., teaching computer science without
computers) and explains how computational thinking can apply beyond the borders of computer
science to a variety of disciplines, such as science, technology, engineering, and mathematics (STEM),
but also the arts and humanities (Bundy, 2007).

Computational thinking
refers to the thought
processes involved in
expressing solutions as
computational steps or
algorithms that can be
carried out by a computer.

70 K–12 Computer Science Framework

Practices Including Computational Thinking

Distinguishing Computational Thinking
The description of computational thinking in the K–12 Computer Science Framework extends beyond
the general use of computers or technology in education to include specific skills such as designing
algorithms, decomposing problems, and modeling phenomena. If computational thinking can take
place without a computer, conversely, using a computer in class does not necessarily constitute
computational thinking. For example, a student is not necessarily using computational thinking
when he or she enters data into a spreadsheet and creates a chart. However, this action can include
computational thinking if the student creates algorithms to automate the transformation of the data or
to power an interactive data visualization.

A computational artifact must be distinguished by evaluating the process used to create it (i.e.,
computational thinking), in addition to the characteristics of the product itself. For example, the same
digital animation may be the result of carefully constructing algorithms that control when characters
move and how they interact or simply selecting characters and actions from a predesignated tem-
plate. In this example, it is the process used to create the animation that defines whether it can be
considered a computational artifact. The assessment of computational thinking can be improved by
having students explain their decisions and development process (Brennan & Resnick, 2012).

K–12 Computer Science Framework 71

Practices Including Computational Thinking

Computer Science Practices and Other Subject Areas
The framework is grounded in the belief that computer science offers unique opportunities for develop-
ing computational thinking and that the framework’s practices can be applied to other subjects beyond
computer science. As Barr and Stephenson (2011) have noted,
the “computer science education community can play an
important role in highlighting algorithmic problem solving
practices and applications of computing across disciplines, and
help integrate the application of computational methods and
tools across diverse areas of learning” (p. 49).

While computational thinking is a focus in computer science,
it is also included in standards for other subjects. For
example, computational thinking is explicitly referenced in
the practices of many state science standards1 and implicitly
in state math standards.2 Additionally, the recent revision to
the International Society for Technology in Education Stan-
dards for Students (ISTE, 2016) describes computational
thinking in a similar way as the framework. All of these
documents share the vision that computational thinking is
important for all students.

Figure 5.2 on the next page describes the intersection among practices in computer science, science
and engineering, and mathematics. Explicit instruction is required to create the connections illustrated
in the figure.

Acknowledgments
The writing team thanks the Computational Thinking Task Force of the Computer Science Teachers
Association for its contribution to this section.

1 Practice 5: Using Mathematics and Computational Thinking (Next Generation Science Standards Lead States, 2013).
2 CCSS.Math.Practice.MP2: Reason abstractly and quantitatively (NGA Center for Best Practices & CCSSO, 2010).

Computational thinking
is a fundamental skill for
everyone, not just for
computer scientists. To
reading, writing, and
arithmetic, we should
add computational
thinking to every child’s
analytical ability
(Wing, 2006, p. 33).

72 K–12 Computer Science Framework

Practices Including Computational Thinking

Figure 5.2: Relationships between computer science, science and engineering, and math practices

CS

MATH SCI/ENG

CS + Math

• Develop and use
abstractions
M2. Reason abstractly
and quantitatively
M7. Look for and make
use of structure
M8. Look for and express
regularity in repeated
reasoning
CS4. Developing and
Using Abstractions

• Use tools when
collaborating
M5. Use appropriate
tools strategically
CS2. Collaborating
Around Computing

• Communicate precisely
M6. Attend to precision
CS7. Communicating
About Computing

CS + Math + Sci/Eng

• Model
S2. Develop and use models
M4. Model with mathematics
CS4. Developing and Using
Abstractions
CS6. Testing and Refining
Computational Artifacts

• Use computational thinking
S5. Use mathematics and
computational thinking
CS3. Recognizing and
Defining Computational
Problems
CS4. Developing and Using
Abstractions
CS5. Creating Computational
Artifacts

• Define problems
S1. Ask questions and define
problems
M1. Make sense of problems
and persevere in solving
them
CS3. Recognizing and
Defining Computational
Problems

• Communicate rationale
S7. Engage in argument
from evidence
S8. Obtain, evaluate, and
communicate information
M3. Construct viable
arguments and critique
the reasoning of others
CS7. Communicating
About Computing

CS + Sci/Eng

• Communicate with data
S4. Analyze and interpret
data
CS7. Communicating
About Computing

• Create artifacts
S3. Plan and carry out
investigations
S6. Construct explanations
and design solutions
CS4. Developing and Using
Abstractions
CS5. Creating Computa-
tional Artifacts
CS6. Testing and Refining
Computational Artifacts

* Computer science practices also overlap with practices in other domains, including English language arts.
For example, CS1. Fostering an Inclusive Computing Culture and CS2. Collaborating Around Computing overlap
with E7. Come to understand other perspectives and cultures through reading, listening, and collaborations.

K–12 Computer Science Framework 73

Practices Including Computational Thinking

References
Aho, A.V. (2011, January) Computation and Computational Thinking. ACM Ubiquity, 1, 1-8.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K–12: What is involved and what is the role of the
computer science education community? ACM Inroads, 2, 48–54.

Brennan, K., & Resnick, M. (2012). Using artifact-based interviews to study the development of computational thinking in
interactive media design. Paper presented at the annual meeting of the American Educational Research Association,
Vancouver, BC, Canada.

Bundy, A. (2007). Computational thinking is pervasive. Journal of Scientific and Practical Computing, 1, 67–69.

Cuny, J., Snyder, L., & Wing, J.M. (2010). Demystifying computational thinking for non-computer scientists. Unpublished
manuscript in progress. Retrieved from http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf

International Society for Technology in Education. (2016). ISTE standards for students. Retrieved from
https://www.iste.org/resources/product?id=3879&childProduct=3848

Lee, I. (2016). Reclaiming the roots of CT. CSTA Voice: The Voice of K–12 Computer Science Education and Its Educators,
12(1), 3–4. Retrieved from http://www.csteachers.org/resource/resmgr/Voice/csta_voice_03_2016.pdf

National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common core state
standards for mathematics. Washington DC: Author.

Next Generation Science Standards Lead States. (2013). Next generation science standards: For states, by states. Washington,
DC: The National Academies Press.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. NY: Basic Books.

Wing, J. M. (2006, March). Computational thinking. Communications of the ACM, 49(3), 33–35.

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society,
366(1881), 3717–3725.

http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf
https://www.iste.org/resources/product?id=3879&childProduct=3848
http://www.csteachers.org/resource/resmgr/Voice/csta_voice_03_2016.pdf

74 K–12 Computer Science Framework

Practices Including Computational Thinking

Practices

Practice 1. Fostering an Inclusive Computing Culture

Overview: Building an inclusive and diverse computing culture requires
strategies for incorporating perspectives from people of different genders,
ethnicities, and abilities. Incorporating these perspectives involves under-
standing the personal, ethical, social, economic, and cultural contexts in
which people operate. Considering the needs of diverse users during the
design process is essential to producing inclusive computational products.

By the end of Grade 12, students should be able to

1. Include the unique perspectives of others and reflect on one’s own perspectives when designing
and developing computational products.

At all grade levels, students should recognize that the choices people make when they create
artifacts are based on personal interests, experiences, and needs. Young learners should begin to
differentiate their technology preferences from the technology preferences of others. Initially,
students should be presented with perspectives from people with different backgrounds, ability
levels, and points of view. As students progress, they should independently seek diverse perspec-
tives throughout the design process for the purpose of improving their computational artifacts.
Students who are well-versed in fostering an inclusive computing culture should be able to differ-
entiate backgrounds and skillsets and know when to call upon others, such as to seek out knowl-
edge about potential end users or intentionally seek input from people with diverse backgrounds.

2. Address the needs of diverse end users during the design process to produce artifacts with
broad accessibility and usability.

At any level, students should recognize that users of technology have different needs and preferenc-
es and that not everyone chooses to use, or is able to use, the same technology products. For
example, young learners, with teacher guidance, might compare a touchpad and a mouse to exam-
ine differences in usability. As students progress, they should consider the preferences of people
who might use their products. Students should be able to evaluate the accessibility of a product to a
broad group of end users, such as people with various disabilities. For example, they may notice that
allowing an end user to change font sizes and colors will make an interface usable for people with
low vision. At the higher grades, students should become aware of professionally accepted accessi-
bility standards and should be able to evaluate computational artifacts for accessibility. Students
should also begin to identify potential bias during the design process to maximize accessibility in
product design. For example, they can test an app and recommend to its designers that it respond
to verbal commands to accommodate users who are blind or have physical disabilities.

K–12 Computer Science Framework 75

Practices Including Computational Thinking

3. Employ self- and peer-advocacy to address bias in interactions, product design, and develop-
ment methods.

After students have experience identifying diverse perspectives and including unique perspectives
(P1.1), they should begin to employ self-advocacy strategies, such as speaking for themselves if their
needs are not met. As students progress, they should advocate for their peers when accommoda-
tions, such as an assistive-technology peripheral device, are needed for someone to use a computa-
tional artifact. Eventually, students should regularly advocate for both themselves and others.

Practice 2. Collaborating Around Computing

Overview: Collaborative computing is the process of performing a computa-
tional task by working in pairs and on teams. Because it involves asking for
the contributions and feedback of others, effective collaboration can lead to
better outcomes than working independently. Collaboration requires individ-
uals to navigate and incorporate diverse perspectives, conflicting ideas,
disparate skills, and distinct personalities. Students should use collaborative
tools to effectively work together and to create complex artifacts.

By the end of Grade 12, students should be able to

1. Cultivate working relationships with individuals possessing diverse perspectives, skills, and
personalities.

At any grade level, students should work collaboratively with others. Early on, they should learn
strategies for working with team members who possess varying individual strengths. For example,
with teacher support, students should begin to give each team member opportunities to contrib-
ute and to work with each other as co-learners. Eventually, students should become more sophisti-
cated at applying strategies for mutual encouragement and support. They should express their
ideas with logical reasoning and find ways to reconcile differences cooperatively. For example,
when they disagree, they should ask others to explain their reasoning and work together to make
respectful, mutual decisions. As they progress, students should use methods for giving all group
members a chance to participate. Older students should strive to improve team efficiency and
effectiveness by regularly evaluating group dynamics. They should use multiple strategies to make
team dynamics more productive. For example, they can ask for the opinions of quieter team
members, minimize interruptions by more talkative members, and give individuals credit for their
ideas and their work.

76 K–12 Computer Science Framework

Practices Including Computational Thinking

2. Create team norms, expectations, and equitable workloads to increase efficiency and effectiveness.

After students have had experience cultivating working relationships within teams (P2.1), they
should gain experience working in particular team roles. Early on, teachers may help guide this
process by providing collaborative structures. For example, students may take turns in different
roles on the project, such as note taker, facilitator, or “driver” of the computer. As students prog-
ress, they should become less dependent on the teacher assigning roles and become more adept
at assigning roles within their teams. For example, they should decide together how to take turns
in different roles. Eventually, students should independently organize their own teams and create
common goals, expectations, and equitable workloads. They should also manage project workflow
using agendas and timelines and should evaluate workflow to identify areas for improvement.

3. Solicit and incorporate feedback from, and provide constructive feedback to, team members and
other stakeholders.

At any level, students should ask questions of others and listen to their opinions. Early on, with
teacher scaffolding, students should seek help and share ideas to achieve a particular purpose. As
they progress in school, students should provide and receive feedback related to computing in
constructive ways. For example, pair programming is a collaborative process that promotes giving
and receiving feedback. Older students should engage in active listening by using questioning
skills and should respond empathetically to others. As they progress, students should be able to
receive feedback from multiple peers and should be able to differentiate opinions. Eventually,
students should seek contributors from various environments. These contributors may include end
users, experts, or general audiences from online forums.

4. Evaluate and select technological tools that can be used to collaborate on a project.

At any level, students should be able to use tools and methods for collaboration on a project. For
example, in the early grades, students could collaboratively brainstorm by writing on a white-
board. As students progress, they should use technological collaboration tools to manage team-
work, such as knowledge-sharing tools and online project spaces. They should also begin to make
decisions about which tools would be best to use and when to use them. Eventually, students
should use different collaborative tools and methods to solicit input from not only team members
and classmates but also others, such as participants in online forums or local communities.

K–12 Computer Science Framework 77

Practices Including Computational Thinking

Practice 3. Recognizing and Defining Computational Problems

Overview: The ability to recognize appropriate and worthwhile opportuni-
ties to apply computation is a skill that develops over time and is central to
computing. Solving a problem with a computational approach requires
defining the problem, breaking it down into parts, and evaluating each part
to determine whether a computational solution is appropriate.

By the end of Grade 12, students should be able to

1. Identify complex, interdisciplinary, real-world problems that can be solved computationally.

At any level, students should be able to identify problems that have been solved computationally.
For example, young students can discuss a technology that has changed the world, such as email
or mobile phones. As they progress, they should ask clarifying questions to understand whether a
problem or part of a problem can be solved using a computational approach. For example, before
attempting to write an algorithm to sort a large list of names, students may ask questions about
how the names are entered and what type of sorting is desired. Older students should identify
more complex problems that involve multiple criteria and constraints. Eventually, students should
be able to identify real-world problems that span multiple disciplines, such as increasing bike
safety with new helmet technology, and can be solved computationally.

2. Decompose complex real-world problems into manageable subproblems that could integrate
existing solutions or procedures.

At any grade level, students should be able to break problems down into their component parts.
In the early grade levels, students should focus on breaking down simple problems. For example,
in a visual programming environment, students could break down (or decompose) the steps
needed to draw a shape. As students progress, they should decompose larger problems into
manageable smaller problems. For example, young students may think of an animation as multiple
scenes and thus create each scene independently. Students can also break down a program into
subgoals: getting input from the user, processing the data, and displaying the result to the user.
Eventually, as students encounter complex real-world problems that span multiple disciplines or
social systems, they should decompose complex problems into manageable subproblems that
could potentially be solved with programs or procedures that already exist. For example, students
could create an app to solve a community problem that connects to an online database through
an application programming interface (API).

78 K–12 Computer Science Framework

Practices Including Computational Thinking

3. Evaluate whether it is appropriate and feasible to solve a problem computationally.

After students have had some experience breaking problems down (P3.2) and identifying sub-
problems that can be solved computationally (P3.1), they should begin to evaluate whether a
computational solution is the most appropriate solution for a particular problem. For example,
students might question whether using a computer to determine whether someone is telling the
truth would be advantageous. As students progress, they should systematically evaluate the
feasibility of using computational tools to solve given problems or subproblems, such as through a
cost-benefit analysis. Eventually, students should include more factors in their evaluations, such as
how efficiency affects feasibility or whether a proposed approach raises ethical concerns.

Practice 4. Developing and Using Abstractions

Overview: Abstractions are formed by identifying patterns and extracting
common features from specific examples to create generalizations. Using
generalized solutions and parts of solutions designed for broad reuse sim-
plifies the development process by managing complexity.

By the end of Grade 12, students should be able to

1. Extract common features from a set of interrelated processes or complex phenomena.

Students at all grade levels should be able to recognize patterns. Young learners should be able to
identify and describe repeated sequences in data or code through analogy to visual patterns or
physical sequences of objects. As they progress, students should identify patterns as opportunities
for abstraction, such as recognizing repeated patterns of code that could be more efficiently
implemented as a loop. Eventually, students should extract common features from more complex
phenomena or processes. For example, students should be able to identify common features in
multiple segments of code and substitute a single segment that uses variables to account for the
differences. In a procedure, the variables would take the form of parameters. When working with
data, students should be able to identify important aspects and find patterns in related data sets
such as crop output, fertilization methods, and climate conditions.

2. Evaluate existing technological functionalities and incorporate them into new designs.

At all levels, students should be able to use well-defined abstractions that hide complexity. Just as
a car hides operating details, such as the mechanics of the engine, a computer program’s “move”
command relies on hidden details that cause an object to change location on the screen. As they
progress, students should incorporate predefined functions into their designs, understanding that
they do not need to know the underlying implementation details of the abstractions that they use.

K–12 Computer Science Framework 79

Practices Including Computational Thinking

Eventually, students should understand the advantages of, and be comfortable using, existing
functionalities (abstractions) including technological resources created by other people, such as
libraries and application programming interfaces (APIs). Students should be able to evaluate
existing abstractions to determine which should be incorporated into designs and how they
should be incorporated. For example, students could build powerful apps by incorporating
existing services, such as online databases that return geolocation coordinates of street names or
food nutrition information.

3. Create modules and develop points of interaction that can apply to multiple situations and
reduce complexity.

After students have had some experience identifying patterns (P4.1), decomposing problems
(P3.2), using abstractions (P4.2), and taking advantage of existing resources (P4.2), they should
begin to develop their own abstractions. As they progress, students should take advantage of
opportunities to develop generalizable modules. For example, students could write more efficient
programs by designing procedures that are used multiple times in the program. These procedures
can be generalized by defining parameters that create different outputs for a wide range of inputs.
Later on, students should be able to design systems of interacting modules, each with a well-de-
fined role, that coordinate to accomplish a common goal. Within an object-oriented programming
context, module design may include defining the interactions among objects. At this stage, these
modules, which combine both data and procedures, can be designed and documented for reuse
in other programs. Additionally, students can design points of interaction, such as a simple user
interface, either text or graphical, that reduces the complexity of a solution and hides lower-level
implementation details.

4. Model phenomena and processes and simulate systems to understand and evaluate potential
outcomes.

Students at all grade levels should be able to represent patterns, processes, or phenomena. With
guidance, young students can draw pictures to describe a simple pattern, such as sunrise and
sunset, or show the stages in a process, such as brushing your teeth. They can also create an
animation to model a phenomenon, such as evaporation. As they progress, students should under-
stand that computers can model real-world phenomena, and they should use existing computer
simulations to learn about real-world systems. For example, they may use a preprogrammed
model to explore how parameters affect a system, such as how rapidly a disease spreads. Older
students should model phenomena as systems, with rules governing the interactions within the
system. Students should analyze and evaluate these models against real-world observations. For
example, students might create a simple producer–consumer ecosystem model using a program-
ming tool. Eventually, they could progress to creating more complex and realistic interactions
between species, such as predation, competition, or symbiosis, and evaluate the model based on
data gathered from nature.

80 K–12 Computer Science Framework

Practices Including Computational Thinking

Practice 5. Creating Computational Artifacts

Overview: The process of developing computational artifacts embraces
both creative expression and the exploration of ideas to create prototypes
and solve computational problems. Students create artifacts that are per-
sonally relevant or beneficial to their community and beyond. Computa-
tional artifacts can be created by combining and modifying existing arti-
facts or by developing new artifacts. Examples of computational artifacts
include programs, simulations, visualizations, digital animations, robotic
systems, and apps.

By the end of Grade 12, students should be able to

1. Plan the development of a computational artifact using an iterative process that includes reflec-
tion on and modification of the plan, taking into account key features, time and resource con-
straints, and user expectations.

At any grade level, students should participate in project planning and the creation of brainstorm-
ing documents. The youngest students may do so with the help of teachers. With scaffolding,
students should gain greater independence and sophistication in the planning, design, and
evaluation of artifacts. As learning progresses, students should systematically plan the develop-
ment of a program or artifact and intentionally apply computational techniques, such as decompo-
sition and abstraction, along with knowledge about existing approaches to artifact design. Stu-
dents should be capable of reflecting on and, if necessary, modifying the plan to accommodate
end goals.

2. Create a computational artifact for practical intent, personal expression, or to address a societal
issue.

Students at all grade levels should develop artifacts in response to a task or a computational
problem. At the earliest grade levels, students should be able to choose from a set of given
commands to create simple animated stories or solve pre-existing problems. Younger students
should focus on artifacts of personal importance. As they progress, student expressions should
become more complex and of increasingly broader significance. Eventually, students should
engage in independent, systematic use of design processes to create artifacts that solve problems
with social significance by seeking input from broad audiences.

3. Modify an existing artifact to improve or customize it.

At all grade levels, students should be able to examine existing artifacts to understand what they
do. As they progress, students should attempt to use existing solutions to accomplish a desired

K–12 Computer Science Framework 81

Practices Including Computational Thinking

goal. For example, students could attach a programmable light sensor to a physical artifact they
have created to make it respond to light. Later on, they should modify or remix parts of existing
programs to develop something new or to add more advanced features and complexity. For
example, students could modify prewritten code from a single-player game to create a two-player
game with slightly different rules.

Practice 6. Testing and Refining Computational Artifacts

Overview: Testing and refinement is the deliberate and iterative process of
improving a computational artifact. This process includes debugging (iden-
tifying and fixing errors) and comparing actual outcomes to intended out-
comes. Students also respond to the changing needs and expectations of
end users and improve the performance, reliability, usability, and accessibil-
ity of artifacts.

By the end of Grade 12, students should be able to

1. Systematically test computational artifacts by considering all scenarios and using test cases.

At any grade level, students should be able to compare results to intended outcomes. Young
students should verify whether given criteria and constraints have been met. As students progress,
they should test computational artifacts by considering potential errors, such as what will happen if
a user enters invalid input. Eventually, testing should become a deliberate process that is more
iterative, systematic, and proactive. Older students should be able to anticipate errors and use
that knowledge to drive development. For example, students can test their program with inputs
associated with all potential scenarios.

2. Identify and fix errors using a systematic process.

At any grade level, students should be able to identify and fix errors in programs (debugging) and
use strategies to solve problems with computing systems (troubleshooting). Young students could
use trial and error to fix simple errors. For example, a student may try reordering the sequence of
commands in a program. In a hardware context, students could try to fix a device by resetting it or
checking whether it is connected to a network. As students progress, they should become more
adept at debugging programs and begin to consider logic errors: cases in which a program works,
but not as desired. In this way, students will examine and correct their own thinking. For example,
they might step through their program, line by line, to identify a loop that does not terminate as
expected. Eventually, older students should progress to using more complex strategies for identi-
fying and fixing errors, such as printing the value of a counter variable while a loop is running to
determine how many times the loop runs.

82 K–12 Computer Science Framework

Practices Including Computational Thinking

3. Evaluate and refine a computational artifact multiple times to enhance its performance, reliability,
usability, and accessibility.

After students have gained experience testing (P6.2), debugging, and revising (P6.1), they should
begin to evaluate and refine their computational artifacts. As students progress, the process of
evaluation and refinement should focus on improving performance and reliability. For example,
students could observe a robot in a variety of lighting conditions to determine that a light sensor
should be less sensitive. Later on, evaluation and refinement should become an iterative process
that also encompasses making artifacts more usable and accessible (P1.2). For example, students
can incorporate feedback from a variety of end users to help guide the size and placement of
menus and buttons in a user interface.

Practice 7. Communicating About Computing

Overview: Communication involves personal expression and exchanging
ideas with others. In computer science, students communicate with diverse
audiences about the use and effects of computation and the appropriate-
ness of computational choices. Students write clear comments, document
their work, and communicate their ideas through multiple forms of media.
Clear communication includes using precise language and carefully consid-
ering possible audiences.

By the end of Grade 12, students should be able to

1. Select, organize, and interpret large data sets from multiple sources to support a claim.

At any grade level, students should be able to refer to data when communicating an idea. Early
on, students should, with guidance, present basic data through the use of visual representations,
such as storyboards, flowcharts, and graphs. As students progress, they should work with larger
data sets and organize the data in those larger sets to make interpreting and communicating it to
others easier, such as through the creation of basic data representations. Eventually, students
should be able to select relevant data from large or complex data sets in support of a claim or to
communicate the information in a more sophisticated manner.

2. Describe, justify, and document computational processes and solutions using appropriate termi-
nology consistent with the intended audience and purpose.

At any grade level, students should be able to talk about choices they make while designing a
computational artifact. Early on, they should use language that articulates what they are doing and
identifies devices and concepts they are using with correct terminology (e.g., program, input, and

K–12 Computer Science Framework 83

Practices Including Computational Thinking

debug). Younger students should identify the goals and expected outcomes of their solutions.
Along the way, students should provide documentation for end users that explains their artifacts
and how they function, and they should both give and receive feedback. For example, students
could provide a project overview and ask for input from users. As students progress, they should
incorporate clear comments in their product and document their process using text, graphics,
presentations, and demonstrations.

3. Articulate ideas responsibly by observing intellectual property rights and giving appropriate
attribution.

All students should be able to explain the concepts of ownership and sharing. Early on, students
should apply these concepts to computational ideas and creations. They should identify instances of
remixing, when ideas are borrowed and iterated upon, and give proper attribution. They should also
recognize the contributions of collaborators. Eventually, students should consider common licenses
that place limitations or restrictions on the use of computational artifacts. For example, a download-
ed image may have restrictions that prohibit modification of an image or using it for commercial
purposes.

Concepts
Including Crosscutting Concepts

K-12 Computer Science Framework 87

6
Concepts Including Crosscutting Concepts

Preface
The core concepts of the K–12 Computer Science Framework represent major content areas in the
field of computer science. The core concepts are delineated by multiple subconcepts that represent
specific ideas within each concept. The learning progressions for each subconcept provide a thread
connecting student learning from kindergarten to 12th grade.

Core concepts of the framework:

1. Computing Systems
2. Networks and the Internet
3. Data and Analysis
4. Algorithms and Programming
5. Impacts of Computing

Crosscutting concepts are themes that illustrate connections among different concept statements.
They are integrated into concept statements, instead of existing as an independent dimension of the
framework. The crosscutting concepts that are represented in each concept statement are noted in
the statement’s descriptive material.

88 K–12 Computer Science Framework

Concepts Including Crosscutting Concepts

Crosscutting concepts of the framework:

• Abstraction
• System Relationships
• Human–Computer Interaction
• Privacy and Security
• Communication and Coordination

Abstraction: An abstraction is the result of reducing a process or set of information to a set of
important characteristics for computational use. Abstractions establish interactions at a level of
reduced complexity by managing the more complex details below the level of interaction. An
abstraction can be created to generalize a range of situations by picking out common properties
minus specific implementation details.

System Relationships: The parts of a system are interdependent and organized for a common
purpose. A systems perspective provides the opportunity to decompose complex problems into parts
that are easier to understand, develop, fix, and maintain. General systems principles include feedback,
control, efficiency, modularity, synthesis, emergence, and hierarchy.

Human–Computer Interaction: Humans interact directly with computers such as laptops and
smartphones but also other devices, such as cars and home appliances, which have embedded
computers. Developing effective and accessible user interfaces involves the integration of technical
knowledge and social science and encompasses both designer and user perspectives.

Privacy and Security: Privacy is the ability to seclude information and express it selectively. It includes
controls for the collection, access, use, storage, sharing, and alteration of information. Security refers
to the safeguards surrounding information systems and includes protection from theft or damage to
hardware, software, and the information in the systems. Security supports privacy.

Communication and Coordination: Processes in computing are characterized by the reliable
exchange of information between autonomous agents (communication) that cooperate toward
common outcomes that no agent could produce alone (coordination). Communication and
coordination are distinct but not independent processes. What is special about computing is the
scale at which communication and coordination work.

K–12 Computer Science Framework 89

Core Concepts and Subconcepts Overviews
Computing Systems
Overview: People interact with a wide variety of computing devices that collect, store, analyze, and
act upon information in ways that can affect human capabilities both positively and negatively. The
physical components (hardware) and instructions (software) that make up a computing system
communicate and process information in digital form. An understanding of hardware and software
is useful when troubleshooting a computing system that does not work as intended.

Devices Overview: Many everyday objects contain computational components that sense
and act on the world. In early grades, students learn features and applications of
common computing devices. As they progress, students learn about connected
systems and how the interaction between humans and devices influences design
decisions.

Hardware and
Software

Overview: Computing systems use hardware and software to communicate and
process information in digital form. In early grades, students learn how systems
use both hardware and software to represent and process information. As they
progress, students gain a deeper understanding of the interaction between
hardware and software at multiple levels within computing systems.

Troubleshooting Overview: When computing systems do not work as intended, troubleshooting
strategies help people solve the problem. In early grades, students learn that
identifying the problem is the first step to fixing it. As they progress, students
learn systematic problem-solving processes and how to develop their own
troubleshooting strategies based on a deeper understanding of how computing
systems work.

Networks and the Internet
Overview: Computing devices typically do not operate in isolation. Networks connect computing
devices to share information and resources and are an increasingly integral part of computing.
Networks and communication systems provide greater connectivity in the computing world by
providing fast, secure communication and facilitating innovation.

Network
Communication
and
Organization

Overview: Computing devices communicate with each other across networks to
share information. In early grades, students learn that computers connect them to
other people, places, and things around the world. As they progress, students
gain a deeper understanding of how information is sent and received across
different types of networks.

Cybersecurity Overview: Transmitting information securely across networks requires
appropriate protection. In early grades, students learn how to protect their
personal information. As they progress, students learn increasingly complex
ways to protect information sent across networks.

Concepts Including Crosscutting Concepts

90 K–12 Computer Science Framework

Data and Analysis
Overview: Computing systems exist to process data. The amount of digital data generated in the
world is rapidly expanding, so the need to process data effectively is increasingly important. Data is
collected and stored so that it can be analyzed to better understand the world and make more
accurate predictions.

Collection Overview: Data is collected with both computational and noncomputational
tools and processes. In early grades, students learn how data about themselves
and their world is collected and used. As they progress, students learn the effects
of collecting data with computational and automated tools.

Storage Overview: Core functions of computers are storing, representing, and retrieving
data. In early grades, students learn how data is stored on computers. As they
progress, students learn how to evaluate different storage methods, including the
tradeoffs associated with those methods.

Visualization and
Transformation

Overview: Data is transformed throughout the process of collection, digital
representation, and analysis. In early grades, students learn how transformations
can be used to simplify data. As they progress, students learn about more com-
plex operations to discover patterns and trends and communicate them to others.

Inference and
Models

Overview: Data science is one example where computer science serves many
fields. Computer science and science use data to make inferences, theories, or
predictions based upon the data collected from users or simulations. In early
grades, students learn about the use of data to make simple predictions. As they
progress, students learn how models and simulations can be used to examine
theories and understand systems and how predictions and inferences are affected
by more complex and larger data sets.

Concepts Including Crosscutting Concepts

K–12 Computer Science Framework 91

Algorithms and Programming
Overview: An algorithm is a sequence of steps designed to accomplish a specific task. Algorithms are
translated into programs, or code, to provide instructions for computing devices. Algorithms and
programming control all computing systems, empowering people to communicate with the world in
new ways and solve compelling problems. The development process to create meaningful and
efficient programs involves choosing which information to use and how to process and store it,
breaking apart large problems into smaller ones, recombining existing solutions, and analyzing
different solutions.

Algorithms Overview: Algorithms are designed to be carried out by both humans and
computers. In early grades, students learn about age-appropriate algorithms
from the real world. As they progress, students learn about the development,
combination, and decomposition of algorithms, as well as the evaluation of
competing algorithms.

Variables Overview: Computer programs store and manipulate data using variables. In
early grades, students learn that different types of data, such as words, numbers,
or pictures, can be used in different ways. As they progress, students learn about
variables and ways to organize large collections of data into data structures of
increasing complexity.

Control Overview: Control structures specify the order in which instructions are executed
within an algorithm or program. In early grades, students learn about sequential
execution and simple control structures. As they progress, students expand their
understanding to combinations of structures that support complex execution.

Modularity Overview: Modularity involves breaking down tasks into simpler tasks and
combining simple tasks to create something more complex. In early grades,
students learn that algorithms and programs can be designed by breaking tasks
into smaller parts and recombining existing solutions. As they progress, students
learn about recognizing patterns to make use of general, reusable solutions for
commonly occurring scenarios and clearly describing tasks in ways that are widely
usable.

Program
Development

Overview: Programs are developed through a design process that is often
repeated until the programmer is satisfied with the solution. In early grades,
students learn how and why people develop programs. As they progress,
students learn about the tradeoffs in program design associated with complex
decisions involving user constraints, efficiency, ethics, and testing.

Concepts Including Crosscutting Concepts

92 K–12 Computer Science Framework

Impacts of Computing
Overview: Computing affects many aspects of the world in both positive and negative ways at local,
national, and global levels. Individuals and communities influence computing through their behaviors
and cultural and social interactions, and in turn, computing influences new cultural practices. An
informed and responsible person should understand the social implications of the digital world,
including equity and access to computing.

Culture Overview: Computing influences culture—including belief systems, language,
relationships, technology, and institutions—and culture shapes how people
engage with and access computing. In early grades, students learn how
computing can be helpful and harmful. As they progress, students learn about
tradeoffs associated with computing and potential future impacts of computing
on global societies.

Social
Interactions

Overview: Computing can support new ways of connecting people,
communicating information, and expressing ideas. In early grades, students learn
that computing can connect people and support interpersonal communication.
As they progress, students learn how the social nature of computing affects
institutions and careers in various sectors.

Safety, Law,
and Ethics

Overview: Legal and ethical considerations of using computing devices influence
behaviors that can affect the safety and security of individuals. In early grades,
students learn the fundamentals of digital citizenship and appropriate use of
digital media. As they progress, students learn about the legal and ethical issues
that shape computing practices.

Concepts Including Crosscutting Concepts

K–12 Computer Science Framework 93

Concepts Including Crosscutting Concepts

Concepts

By the end of Grade 2

Computing Systems

DEVICES People use computing devices to perform a variety of tasks accurately and
quickly. Computing devices interpret and follow the instructions they are
given literally.

Computing devices can be used to do a number of things, such as play music,
create documents, and send pictures. Computing devices are also very precise.
For example, computers can perform multiple complex calculations much
faster and with greater accuracy than people. While people may diverge from
instructions given to them, computers will follow instructions exactly as they are
given, even if they do not achieve the intended result.

Crosscutting Concept: Human–Computer Interaction

Connections Within Framework: K–2.Algorithms and Programming.Control; K–2.
Algorithms and Programming.Modularity; 3–5.Algorithms and Programming.Control

HARDWARE AND
SOFTWARE

A computing system is composed of hardware and software. Hardware
consists of physical components, while software provides instructions for the
system. These instructions are represented in a form that a computer can
understand.

Examples of hardware include screens to display information and buttons, keys,
or dials to enter information. Software applications are programs with specific
purposes, such as a web browser or game. A person may use a mouse (hard-
ware) to click on a button displayed in a web browser (software) to navigate to a
new web page. Computing systems convert instructions, such as “print,”
“save,” or “crop,” into a special language that the computer can understand. At
this level, understanding that computer information is encoded is appropriate,
but the explicit understanding of “bits” is reserved for later grade levels.

Crosscutting Concept: Communication and Coordination

Connections Within Framework: K–2.Algorithms and Programming.
Algorithms; K–2.Algorithms and Programming.Control

TROUBLESHOOTING Computing systems might not work as expected because of hardware or
software problems. Clearly describing a problem is the first step toward
finding a solution.
Problems with computing systems have different causes, such as hardware
settings, programming errors, or faulty connections to other devices.
Developmentally appropriate ways to solve problems include debugging simple
programs and seeking help by clearly describing a problem (for example, “The
computer won’t turn on,” “The pointer on the screen won’t move,” or “I lost
the web page.”) Knowing how to diagnose or troubleshoot a problem with a
computing system is not expected.

Crosscutting Concept: System Relationships

Connection Within Framework: 3–5.Algorithms and Programming.Program
Development

94 K–12 Computer Science Framework

Concepts Including Crosscutting Concepts

Networks and the Internet

NETWORK
COMMUNICATION
AND
ORGANIZATION

Computer networks can be used to connect people to other people, places,
information, and ideas. The Internet enables people to connect with others
worldwide through many different points of connection.

Small, wireless devices, such as cell phones, communicate with one another
through a series of intermediary connection points, such as cellular towers. This
coordination among many computing devices allows a person to voice call a friend
or video chat with a family member. Details about the connection points are not
expected at this level.

Crosscutting Concepts: Communication and Coordination; Human–Computer
Interaction

Connections Within Framework: K–2.Impacts of Computing.Social Interactions;
K–2.Data and Analysis.Collection; 3–5.Impacts of Computing.Social Interactions

CYBERSECURITY Connecting devices to a network or the Internet provides great benefit, care
must be taken to use authentication measures, such as strong passwords, to
protect devices and information from unauthorized access.

Authentication is the ability to verify the identity of a person or entity. Usernames
and passwords, such as those on computing devices or Wi-Fi networks, provide a
way of authenticating a user’s identity. Because computers make guessing weak
passwords easy, strong passwords have characteristics that make them more
time-intensive to break.

Crosscutting Concepts: Privacy and Security; Communication and Coordination

Connection Within Framework: K–2.Impacts of Computing.Safety, Law, and
Ethics

By the end of Grade 2: continued from previous page

K–12 Computer Science Framework 95

Data and Analysis

COLLECTION Everyday digital devices collect and display data over time. The collection
and use of data about individuals and the world around them is a routine part
of life and influences how people live.

Many everyday objects, such as cell phones, digital toys, and cars, can contain
tools (such as sensors) and computers to collect and display data from their
surroundings.

Crosscutting Concept: Human–Computer Interaction

Connection Within Framework: K–2.Networks and the Internet.Network Commu-
nication and Organization

STORAGE Computers store data that can be retrieved later. Identical copies of data can
be made and stored in multiple locations for a variety of reasons, such as to
protect against loss.

For example, pictures can be stored on a cell phone and viewed later, or progress
in a game can be saved and continued later. The advantage of recording data
digitally, such as in images or a spreadsheet, versus on a physical space, such as a
whiteboard, is that old data (states of data collected over time) can be easily
retrieved, copied, and stored in multiple places. This is why personal information
put online can persist for a long time. Understanding local versus online storage is
not expected at this level.

Crosscutting Concepts: System Relationships; Privacy and Security

Connections Within Framework: K–2.Impacts of Computing.Social Interactions;
K–2.Algorithms and Programming.Variables

VISUALIZATION AND
TRANSFORMATION

Data can be displayed for communication in many ways. People use
computers to transform data into new forms, such as graphs and charts.

Examples of displays include picture graphs, bar charts, or histograms. A data
table that records a tally of students’ favorite colors can be displayed as a chart on
a computer.

Crosscutting Concept: Abstraction

Connection Within Framework: K–2.Impacts of Computing.Social Interactions

INFERENCE AND
MODELS

Data can be used to make inferences or predictions about the world.
Inferences, statements about something that cannot be readily observed,
are often based on observed data. Predictions, statements about future
events, are based on patterns in data and can be made by looking at data
visualizations, such as charts and graphs.

Observations of people’s clothing (jackets and coats) can be used to make an
inference about the weather (it is cold outside). Patterns in past data can be
identified and extrapolated to make predictions. For example, a person’s lunch
menu selection can be predicted by using data on past lunch selections.

Crosscutting Concept: Abstraction

Connection Within Framework: K–2.Impacts of Computing.Culture

By the end of Grade 2: continued from previous page

Concepts Including Crosscutting Concepts

96 K–12 Computer Science Framework

Algorithms and Programming

ALGORITHMS People follow and create processes as part of daily life. Many of these
processes can be expressed as algorithms that computers can follow.

Routines, such as morning meeting, clean-up time, and dismissal, are examples
of algorithms that are common in many early elementary classrooms. Other
examples of algorithms include making simple foods, navigating a classroom, and
daily routines like brushing teeth. Just as people use algorithms to complete daily
routines, they can program computers to use algorithms to complete different
tasks. Algorithms are commonly implemented using a precise language that
computers can interpret.

Crosscutting Concept: Abstraction

Connection Within Framework: K–2.Computing Systems.Hardware and Software

VARIABLES Information in the real world can be represented in computer programs.
Programs store and manipulate data, such as numbers, words, colors, and
images. The type of data determines the actions and attributes associated
with it.

Different actions are available for different kinds of information. For example,
sprites (character images) can be moved and turned, numbers can be added or
subtracted, and pictures can be recolored or cropped.

Crosscutting Concept: Abstraction

Connection Within Framework: K–2.Data and Analysis.Storage

CONTROL Computers follow precise sequences of instructions that automate tasks.
Program execution can also be nonsequential by repeating patterns of
instructions and using events to initiate instructions.

Computers follow instructions literally. Examples of sequences of instructions
include steps for drawing a shape or moving a character across the screen. An
event, such as the press of a button, can trigger an action. Simple loops can be
used to repeat instructions. At this level, distinguishing different types of loops is
not expected.

Crosscutting Concept: Abstraction

Connection Within Framework: K–2.Data and Analysis.Storage

By the end of Grade 2: continued from previous page

Concepts Including Crosscutting Concepts

K–12 Computer Science Framework 97

Concepts Including Crosscutting Concepts

MODULARITY Complex tasks can be broken down into simpler instructions, some of which
can be broken down even further. Likewise, instructions can be combined to
accomplish complex tasks.

Decomposition is the act of breaking down tasks into simpler tasks. An example
of decomposition is preparing for a party: it involves inviting guests, making food,
and setting the table. These tasks can be broken down further. For example,
setting the table involves laying a tablecloth, folding napkins, and placing utensils
and plates on the table. Another example is breaking down the steps to draw a
polygon.

Composition, on the other hand, is the combination of smaller tasks into more
complex tasks. To build a city, people build several houses, a school, a store, etc.
To create a group art project, people can paint or draw their favorite ocean
animal, then combine them to create an ecosystem.

Crosscutting Concept: System Relationships

Connection Within Framework: K–2.Computing Systems.Devices

PROGRAM
DEVELOPMENT

People develop programs collaboratively and for a purpose, such as
expressing ideas or addressing problems.

People work together to plan, create, and test programs within a context that is
relevant to the programmer and users. Programming is used as a tool to create
products that reflect a wide range of interests, such as video games, interactive
art projects, and digital stories.

Crosscutting Concept: Human–Computer Interaction

Connection Within Framework: 3–5.Impacts of Computing.Culture

By the end of Grade 2: continued from previous page

98 K–12 Computer Science Framework

Concepts Including Crosscutting Concepts

Impacts of Computing

CULTURE Computing technology has positively and negatively changed the way people
live and work. Computing devices can be used for entertainment and as
productivity tools, and they can affect relationships and lifestyles.

Computing devices, such as fitness trackers, can motivate a more active lifestyle
by monitoring physical activity. On the other hand, passively consuming media
from computing devices may lead to a more sedentary lifestyle. In the past, the
most popular form of communication was to send mail via the postal service.
Now, more people send emails or text messages.

Crosscutting Concept: Human–Computer Interaction

Connection Within Framework: K–2.Data and Analysis.Inference and Models

SOCIAL
INTERACTIONS

Computing has positively and negatively changed the way people
communicate. People can have access to information and each other instantly,
anywhere, and at any time, but they are at the risk of cyberbullying and
reduced privacy.

Online communication facilitates positive interactions, such as sharing ideas with
many people, but the public and anonymous nature of online communication also
allows intimidating and inappropriate behavior in the form of cyberbullying.
Privacy should be considered when posting information online; such information
can persist for a long time and be accessed by others, even unintended viewers.

Crosscutting Concepts: Human–Computer Interaction; Privacy and Security

Connections Within Framework: K–2.Data and Analysis.Storage; K–2.Data and
Analysis.Visualization and Transformation

SAFETY, LAW, AND
ETHICS

People use computing technology in ways that can help or hurt themselves or
others. Harmful behaviors, such as sharing private information and interacting
with strangers, should be recognized and avoided.

Using computers comes with a level of responsibility, such as not sharing login
information, keeping passwords private, and logging off when finished. Rules
guiding interactions in the world, such as “stranger danger,” apply to online
environments as well.

Crosscutting Concept: Privacy and Security

Connection Within Framework: K–2.Networks and the Internet.Cybersecurity

By the end of Grade 2: continued from previous page

K–12 Computer Science Framework 99

Concepts Including Crosscutting Concepts

By the end of Grade 5

Computing Systems

DEVICES Computing devices may be connected to other devices or components
to extend their capabilities, such as sensing and sending information.
Connections can take many forms, such as physical or wireless. Together,
devices and components form a system of interdependent parts that interact
for a common purpose.

Computing devices often depend on other devices or components. For
example, a robot depends on a physically attached light sensor to detect
changes in brightness, whereas the light sensor depends on the robot for
power. A smartphone can use wirelessly connected headphones to send audio
information, and the headphones are useless without a music source.

Crosscutting Concepts: Communication and Coordination; System Relationships

Connection Within Framework: 3–5.Networks and the Internet.Network
Communication and Organization

HARDWARE AND
SOFTWARE

Hardware and software work together as a system to accomplish tasks, such
as sending, receiving, processing, and storing units of information as bits.
Bits serve as the basic unit of data in computing systems and can represent a
variety of information.

For example, a photo filter application (software) works with a camera (hardware)
to produce a variety of effects that change the appearance of an image. This
image is transmitted and stored as bits, or binary digits, which are commonly
represented as 0s and 1s. All information, including instructions, is encoded as
bits. Knowledge of the inner workings of hardware and software, number
systems such as binary or hexadecimal, and how bits are represented in physical
media are not priorities at this level.

Crosscutting Concepts: Communication and Coordination; Abstraction

Connection Within Framework: 3–5.Data and Analysis.Storage

TROUBLESHOOTING Computing systems share similarities, such as the use of power, data, and
memory. Common troubleshooting strategies, such as checking that power
is available, checking that physical and wireless connections are working,
and clearing out the working memory by restarting programs or devices, are
effective for many systems.

Although computing systems may vary, common troubleshooting strategies can
be used on them, such as checking connections and power or swapping a
working part in place of a potentially defective part. Rebooting
a machine is commonly effective because it resets the computer. Because
computing devices are composed of an interconnected system of hardware and
software, troubleshooting strategies may need to address both.

Crosscutting Concepts: System Relationships; Abstraction

Connection Within Framework: 3–5.Networks and the Internet.Network
Communication and Organization

100 K–12 Computer Science Framework

Concepts Including Crosscutting Concepts

Networks and the Internet

NETWORK
COMMUNICATION
AND
ORGANIZATION

Information needs a physical or wireless path to travel to be sent and
received, and some paths are better than others. Information is broken into
smaller pieces, called packets, that are sent independently and reassembled
at the destination. Routers and switches are used to properly send packets
across paths to their destinations.

There are physical paths for communicating information, such as ethernet
cables, and wireless paths, such as Wi-Fi. Often, information travels on a
combination of physical and wireless paths; for example, wireless paths originate
from a physical connection point. The choice of device and type of connection
will affect the path information travels and the potential bandwidth (the capacity
to transmit data or bits in a given timeframe). Packets and packet switching
(the method used to send packets) are the foundation for further understanding
of Internet concepts. At this level, the priority is understanding the flow of
information, rather than details of how routers and switches work and how to
compare paths.

Crosscutting Concept: Communication and Coordination

Connections Within Framework: 3–5.Computing Systems.Devices; 3–5.
Computing Systems.Troubleshooting

CYBERSECURITY Information can be protected using various security measures. These
measures can be physical and/or digital.

An offline backup of data is useful in case of an online security breach. A variety
of software applications can monitor and address viruses and malware and alert
users to their presence. Security measures can be applied to a network or
individual devices on a network. Confidentiality refers to the protection of
information from disclosure to unauthorized individuals, systems, or entities.

Crosscutting Concept: Privacy and Security

Connection Within Framework: 3–5.Impacts of Computing.Safety, Law, and
Ethics

By the end of Grade 5: continued from previous page

K–12 Computer Science Framework 101

Concepts Including Crosscutting Concepts

Data and Analysis

COLLECTION People select digital tools for the collection of data based on what is
being observed and how the data will be used. For example, a digital
thermometer is used to measure temperature and a GPS sensor is used to
track locations.

There is a wide array of digital data collection tools; however, only some are
appropriate for certain types of data. Tools are chosen based upon the type of
measurement they use as well as the type of data people wish to observe. Data
scientists use the term observation to describe data collection, whether or not a
human is involved in the collection.

Crosscutting Concept: Abstraction

Connections Within Framework: 3–5.Algorithms and Programming.Variables;
3–5.Algorithms and Programming.Algorithms

STORAGE Different software tools used to access data may store the data differently.
The type of data being stored and the level of detail represented by that
data affect the storage requirements.

Music, images, video, and text require different amounts of storage. Video will
often require more storage than music or images alone because video combines
both. For example, two pictures of the same object can require different amounts
of storage based upon their resolution. Different software tools used to access
and store data may add additional data about the data (metadata), which
results in different storage requirements. An image file is a designed
representation of a real-world image and can be opened by either an image
editor or a text editor, but the text editor does not know how to translate the
data into the image. Understanding binary or 8-bit versus 16-bit representations
is not expected at this level.

Crosscutting Concept: System Relationships

Connections Within Framework: 3–5.Computing Systems.Hardware and
Software; 3–5.Algorithms and Programming.Variables

VISUALIZATION AND
TRANSFORMATION

People select aspects and subsets of data to be transformed, organized,
clustered, and categorized to provide different views and communicate
insights gained from the data.

Data is often sorted or grouped to provide additional clarity. Data points can be
clustered by a number of commonalities without a category label. For example,
a series of days might be grouped by temperature, air pressure, and humidity
and later categorized as fair, mild, or extreme weather. The same data could be
manipulated in different ways to emphasize particular aspects or parts of the
data set. For example, when working with a data set of popular songs, data
could be shown by genre or artist. Simple data visualizations include graphs and
charts, infographics, and ratios that represent statistical
characteristics of the data.

Crosscutting Concepts: Abstraction; Human–Computer Interaction

Connection Within Framework: 6–8.Impacts of Computing.Social Interactions

By the end of Grade 5: continued from previous page

102 K–12 Computer Science Framework

Concepts Including Crosscutting Concepts

INFERENCE AND
MODELS

The accuracy of inferences and predictions is related to how realistically
data is represented. Many factors influence the accuracy of inferences and
predictions, such as the amount and relevance of data collected.

People use data to highlight or propose cause-and-effect relationships and
predict outcomes. Basing inferences or predictions on data does not guarantee
their accuracy; the data must be relevant and of sufficient quantity. An example
of irrelevance is using eye color data when inferring someone’s age. An example
of insufficient quantity is predicting the outcome of an election by polling only a
few people.

Crosscutting Concept: System Relationships

By the end of Grade 5: continued from previous page

K–12 Computer Science Framework 103

Concepts Including Crosscutting Concepts

Algorithms and Programming

ALGORITHMS Different algorithms can achieve the same result. Some algorithms are more
appropriate for a specific context than others.

Different algorithms can be used to tie shoes or decide which path to take on
the way home from school. While the end results may be similar, they may not
be the same: in the example of going home, some paths could be faster, slower,
or more direct, depending on varying factors, such as available time or the
presence of obstacles (for example, a barking dog). Algorithms can be
expressed in noncomputer languages, including natural language, flowcharts,
and pseudocode.

Crosscutting Concept: Abstraction

Connection Within Framework: 3–5.Data and Analysis.Collection

VARIABLES Programming languages provide variables, which are used to store and
modify data. The data type determines the values and operations that can
be performed on that data.

Variables are the vehicle through which computer programs store different
types of data. At this level, understanding how to use variables is sufficient,
without a fuller understanding of the technical aspects of variables (such as
identifiers and memory locations). Data types vary by programming language,
but many have types for numbers and text. Examples of operations associated
with those types are multiplying numbers and combining text. Some visual,
block-based languages do not have explicitly declared types but still have
certain operations that apply only to particular types of data in a program.

Crosscutting Concept: Abstraction

Connection Within Framework: 3–5.Data and Analysis.Storage

CONTROL Control structures, including loops, event handlers, and conditionals, are
used to specify the flow of execution. Conditionals selectively execute or
skip instructions under different conditions.

Different types of loops are used to repeat instructions in multiple ways
depending on the situation. Examples of events include mouse clicks, typing
on the keyboard, and collisions between objects. Event handlers are sets of
commands that are tied to specific events. Conditionals represent decisions and
are composed of a Boolean condition that specifies actions based on whether
the condition evaluates to true or false. Boolean logic and operators (e.g., AND,
OR, NOT) can be used to specify the appropriate groups of instructions to
execute under various conditions.

Crosscutting Concepts: Abstraction; Communication and Coordination

Connection Within Framework: K–2.Computing Systems.Devices

By the end of Grade 5: continued from previous page

104 K–12 Computer Science Framework

Concepts Including Crosscutting Concepts

MODULARITY Programs can be broken down into smaller parts to facilitate their design,
implementation, and review. Programs can also be created by incorporating
smaller portions of programs that have already been created.

Decomposition facilitates aspects of program development, such as testing, by
allowing people to focus on one piece at a time. Decomposition also enables
different people to work on different parts at the same time. An example of
decomposition at this level is creating an animation by separating a story into
different scenes. For each scene, a background needs to be selected, characters
placed, and actions programmed. The instructions required to program each
scene may be similar to instructions in other programs.

Crosscutting Concepts: System Relationships; Abstraction

PROGRAM
DEVELOPMENT

People develop programs using an iterative process involving design,
implementation, and review. Design often involves reusing existing code or
remixing other programs within a community. People continuously review
whether programs work as expected, and they fix, or debug, parts that do
not. Repeating these steps enables people to refine and improve programs.

Design, implementation, and review can be further broken down into additional
stages and may have different labels. The design stage occurs before writing
code. This is a planning stage in which the programmers gather information
about the problem and sketch out a solution. During the implementation stage,
the planned design is expressed in a programming language (code) that can be
made to run on a computing device. During the review stage, the design and
implementation are checked for adherence to program requirements, correct-
ness, and usability. This review could lead to changes in implementation and
possibly design, which demonstrates the iterative nature of the process. A
community is created by people who share and provide feedback on one
another’s creations.

Crosscutting Concepts: Human–Computer Interaction; System Relationships

Connection Within Framework: K–2.Computing Systems.Troubleshooting

By the end of Grade 5: continued from previous page

K–12 Computer Science Framework 105

Concepts Including Crosscutting Concepts

Impacts of Computing

CULTURE The development and modification of computing technology is driven by
people’s needs and wants and can affect groups differently. Computing
technologies influence, and are influenced by, cultural practices.

New computing technology is created and existing technologies are modified to
increase their benefits (for example, Internet search recommendations), decrease
their risks (for example, autonomous cars), and meet societal demands (for
example, smartphone apps). Increased Internet access and speed have allowed
people to share cultural information but have also affected the practice of
traditional cultural customs.

Crosscutting Concepts: Human–Computer Interaction; System Relationships

Connections Within Framework: K–2.Algorithms and Programming.Program
Development; 6–8.Computing Systems.Devices; 6–8.Algorithms and Program-
ming.Program Development

SOCIAL
INTERACTIONS

Computing technology allows for local and global collaboration. By
facilitating communication and innovation, computing influences many
social institutions such as family, education, religion, and the economy.

People can work in different places and at different times to collaborate and
share ideas when they use technologies that reach across the globe. These
social interactions affect how local and global groups interact with each other,
and alternatively, these interactions can change the nature of groups. For
example, a class can discuss ideas in the same school or in another nation
through interactive webinars.

Crosscutting Concepts: System Relationships; Human–Computer Interaction

Connection Within Framework: K–2.Networks and the Internet.Network
Communication and Organization

SAFETY, LAW, AND
ETHICS

Ethical complications arise from the opportunities provided by computing.
The ease of sending and receiving copies of media on the Internet, such as
video, photos, and music, creates the opportunity for unauthorized use, such
as online piracy, and disregard of copyrights, such as lack of attribution.

Online piracy, the illegal copying of materials, is facilitated by the ability to make
identical-quality copies of digital media with little effort. Other topics related to
copyright are plagiarism, fair use, and properly citing online sources. Knowledge
of specific copyright laws is not an expectation at this level.

Crosscutting Concepts: System Relationships; Privacy and Security

Connection Within Framework: 3–5.Networks and the Internet.Cybersecurity

By the end of Grade 5: continued from previous page

106 K–12 Computer Science Framework

Concepts Including Crosscutting Concepts

By the end of Grade 8

Computing Systems

DEVICES The interaction between humans and computing devices presents
advantages, disadvantages, and unintended consequences. The study of
human–computer interaction can improve the design of devices and extend
the abilities of humans.

Accessibility is an important consideration in the design of any computing system.
For example, assistive devices provide capabilities such as scanning written
information and converting it to speech.The use of computing devices also has
potential consequences, such as in the areas of privacy and security. For
example, GPS-enabled smartphones can provide directions to a destination yet
unintentionally allow a person to be tracked for malicious purposes. Also, the
attention required to follow GPS directions can lead to accidents due to
distracted driving.

Crosscutting Concepts: Human–Computer Interaction; Privacy and Security

Connection Within Framework: 3–5.Impacts of Computing.Culture

HARDWARE AND
SOFTWARE

Hardware and software determine a computing system’s capability to store
and process information. The design or selection of a computing system
involves multiple considerations and potential tradeoffs, such as
functionality, cost, size, speed, accessibility, and aesthetics.

The capability of a computing system is determined by the processor speed,
storage capacity, and data transmission speed, as well as other factors. Selecting
one computing system over another involves balancing a number of tradeoffs.
For example, selecting a faster computer with more memory involves the
tradeoffs of speed and cost. Choosing one operating system over another
involves the tradeoff of capability and compatibility, such as which apps can
be installed or which devices can be connected. Designing a robot requires
choosing both hardware and software and may involve a tradeoff between the
potential for customization and ease of use. The use of a device that connects
wirelessly through a Bluetooth connection versus a device that connects
physically through a USB connection involves a tradeoff between mobility and
the need for an additional power source for the wireless device.

Crosscutting Concepts: System Relationships; Communication and Coordination

Connection Within Framework: 6–8.Data and Analysis.Collection

K–12 Computer Science Framework 107

Concepts Including Crosscutting Concepts

TROUBLESHOOTING Comprehensive troubleshooting requires knowledge of how computing
devices and components work and interact. A systematic process will
identify the source of a problem, whether within a device or in a larger
system of connected devices.

Just as pilots use checklists to troubleshoot problems with aircraft systems,
people can use a similar, structured process to troubleshoot problems with
computing systems and ensure that potential solutions are not overlooked.
Because a computing device may interact with interconnected devices within a
system, problems may not be due to the specific computing device itself but to
devices connected to it. Examples of system components that may need
troubleshooting are physical and wireless connections, peripheral equipment,
and network hardware. Strategies for troubleshooting a computing system and
debugging a program include some problem-solving steps that are similar.

Crosscutting Concepts: System Relationships; Abstraction

Connection Within Framework: 6–8.Algorithms and Programming.Algorithms

By the end of Grade 8: continued from previous page

108 K–12 Computer Science Framework

Concepts Including Crosscutting Concepts

Networks and the Internet

NETWORK
COMMUNICATION
AND
ORGANIZATION

Computers send and receive information based on a set of rules called
protocols. Protocols define how messages between computers are
structured and sent. Considerations of security, speed, and reliability are
used to determine the best path to send and receive data.

Protocols allow devices with different hardware and software to communicate,
in the way that people with different native languages may use a common
language for business. Protocols describe established commands and responses
between computers on a network, such as requesting data or sending an image.
There are many examples of protocols including TCP/IP (Transmission Control
Protocol/Internet Protocol) and HTTP (Hypertext Transfer Protocol), which serve
as the foundation for formatting and transmitting messages and data, including
pages on the World Wide Web. Routers also implement protocols to record the
fastest and most reliable paths by sending small packets as tests. The priority at
this grade level is understanding the purposeof protocols, while knowing details
of how specific protocols work is not expected.

Crosscutting Concepts: Communication and Coordination; Abstraction; Privacy
and Security

Connection Within Framework: 6–8.Data and Analysis.Storage

CYBERSECURITY The information sent and received across networks can be protected
from unauthorized access and modification in a variety of ways, such as
encryption to maintain its confidentiality and restricted access to maintain its
integrity. Security measures to safeguard online information proactively
address the threat of breaches to personal and private data.

The integrity of information involves ensuring its consistency, accuracy, and
trustworthiness. For example, HTTPS (Hypertext Transfer Protocol Secure) is an
example of a security measure to protect data transmissions. It provides a more
secure browser connection than HTTP (Hypertext Transfer Protocol) because it
encrypts data being sent between websites. At this level, understanding the
difference between HTTP and HTTPS, but not how the technologies work, is
important.

Crosscutting Concept: Privacy and Security

Connection Within Framework: 6–8.Impacts of Computing.Safety, Law, and
Ethics

By the end of Grade 8: continued from previous page

K–12 Computer Science Framework 109

Concepts Including Crosscutting Concepts

Data and Analysis

COLLECTION People design algorithms and tools to automate the collection of data
by computers. When data collection is automated, data is sampled and
converted into a form that a computer can process. For example, data from
an analog sensor must be converted into a digital form. The method used to
automate data collection is influenced by the availability of tools and the
intended use of the data.

Data can be collected from either individual devices or systems. The method of
data collection (for example, surveys versus sensor data) can affect the accuracy
and precision of the data. Some types of data are more difficult to collect than
others. For example, emotions must be subjectively evaluated on an individual
basis and are thus difficult to measure across a population. Access to tools may
be limited by factors including cost, training, and availability.

Crosscutting Concept: Human–Computer Interaction

Connection Within Framework: 6–8.Computing Systems.Hardware and Software

STORAGE Applications store data as a representation. Representations occur at
multiple levels, from the arrangement of information into organized formats
(such as tables in software) to the physical storage of bits. The software tools
used to access information translate the low-level representation of bits into
a form understandable by people.

Computers can represent a variety of data using discrete values at many
different levels, such as characters, numbers, and bits. Text is represented using
character encoding standards like UNICODE, which represent text as numbers.
All numbers and other types of data are encoded and stored as bits on a
physical medium. Lossy and lossless data formats are used to store different
levels of detail, but whenever digital data is used to represent analog measure-
ments, such as temperature or sound, information is lost. Representations, or file
formats, can contain metadata that is not always visible to the average user.
There are privacy implications when files contain metadata, such as the location
where a photograph was taken.

Crosscutting Concept: Abstraction

Connections Within Framework: 6–8.Algorithms and Programming.Variables;
6–8.Networks and the Internet.Network Communication and Organization

By the end of Grade 8: continued from previous page

110 K–12 Computer Science Framework

Concepts Including Crosscutting Concepts

VISUALIZATION AND
TRANSFORMATION

Data can be transformed to remove errors, highlight or expose relationships,
and/or make it easier for computers to process.

The cleaning of data is an important transformation for reducing noise and
errors. An example of noise would be the first few seconds of a sample in which
an audio sensor collects extraneous sound created by the user positioning the
sensor. Errors in survey data are cleaned up to remove spurious or inappropriate
responses. An example of a transformation that highlights a relationship is
representing two groups (such as males and females) as percentages of a whole
instead of as individual counts. Computational biologists use compression
algorithms to make extremely large data sets of genetic information more
manageable and the analysis more efficient.

Crosscutting Concept: Abstraction

Connection Within Framework: 6–8.Algorithms and Programming.Algorithms

INFERENCE AND
MODELS

Computer models can be used to simulate events, examine theories and
inferences, or make predictions with either few or millions of data points.
Computer models are abstractions that represent phenomena and use data
and algorithms to emphasize key features and relationships within a system.
As more data is automatically collected, models can be refined.

Very large data sets require a model for analysis; they are too large to be
analyzed by examining all of the records. While individual users are online,
shopping websites and online advertisements use personal data they generate,
compared to millions of other users, to predict what they would like and make
recommendations. A video-streaming website may recommend videos based on
models generated from other users and based upon their personal habits and
preferences. The data that is collected about an individual and potential
inferences made from that data can have implications for privacy.

Crosscutting Concepts: Privacy and Security; Abstraction

Connections Within Framework: 6–8.Algorithms and Programming.Algorithms;
6–8.Impacts of Computing.Culture

By the end of Grade 8: continued from previous page

K–12 Computer Science Framework 111

Concepts Including Crosscutting Concepts

Algorithms and Programming

ALGORITHMS Algorithms affect how people interact with computers and the way computers
respond. People design algorithms that are generalizable to many situations.
Algorithms that are readable are easier to follow, test, and debug.

Algorithms control what recommendations a user may get on a music-streaming
website, how a game responds to finger presses on a touchscreen, and how
information is sent across the Internet. An algorithm that is generalizable to
many situations can produce different outputs, based on a wide range of inputs.
For example, an algorithm for a smart thermostat may control the temperature
based on the time of day, how many people are at home, and current electricity
consumption. The testing of an algorithm requires the use of inputs that reflect
all possible conditions to evaluate its accuracy and robustness.

Crosscutting Concepts: Human–Computer Interaction; Abstraction

Connections Within Framework: 6–8.Data and Analysis.Inference and Models;
6–8.Computing Systems.Troubleshooting; 6–8.Data and Analysis.Visualization
and Transformation

VARIABLES Programmers create variables to store data values of selected types. A
meaningful identifier is assigned to each variable to access and perform
operations on the value by name. Variables enable the flexibility to represent
different situations, process different sets of data, and produce varying
outputs.

At this level, students deepen their understanding of variables, including when
and how to declare and name new variables. A variable is like a container with a
name, in which the contents may change, but the name (identifier) does not. The
identifier makes keeping track of the data that is stored easier, especially if the
data changes. Naming conventions for identifiers, and thoughtful choices of
identifiers, improve program readability.

The term variable is used differently in programming than the way it is
commonly used in mathematics: a program variable refers to a location in which
a value is stored, and the name used to access the value is called the identifier.
A program variable is assigned a value, and that value may change throughout
the execution of the program. Mathematicians typically do not make a
distinction between a variable and the variable name. A mathematics
variable often represents a set of values for which the statement containing
the variable is true.

Crosscutting Concept: Abstraction

Connection Within Framework: 6–8.Data and Analysis.Storage

By the end of Grade 8: continued from previous page

112 K–12 Computer Science Framework

Concepts Including Crosscutting Concepts

CONTROL Programmers select and combine control structures, such as loops, event
handlers, and conditionals, to create more complex program behavior.

Conditional statements can have varying levels of complexity, including
compound and nested conditionals. Compound conditionals combine two or
more conditions in a logical relationship, and nesting conditionals within one
another allows the result of one conditional to lead to another being evaluated.
An example of a nested conditional structure is deciding what to do based on
the weather outside. If it is sunny outside, I will further decide if I want to ride my
bike or go running, but if it is not sunny outside, I will decide whether to read a
book or watch TV. Different types of control structures can be combined with
one another, such as loops and conditionals. Different types of programming
languages implement control structures in different ways. For example,
functional programming languagesimplement repetition using recursive function
calls instead of loops. At this level, understanding implementation in multiple
languages is not essential.

Crosscutting Concept: Abstraction

MODULARITY Programs use procedures to organize code, hide implementation details, and
make code easier to reuse. Procedures can be repurposed in new programs.
Defining parameters for procedures can generalize behavior and increase
reusability.

A procedure is a module (a group of instructions within a program) that performs a
particular task. In this framework, procedure is used as a general term that may
refer to an actual procedure or a method, function, or similar concept in other
programming languages. Procedures are invoked to repeat groups of instructions.
For example, a procedure, such as one to draw a circle, involves many instructions,
but all of them can be invoked with one instruction, such as “drawCircle.”
Procedures that are defined with parameters are generalizable to many situations
and will produce different outputs based on a wide range of inputs (arguments).

Crosscutting Concepts: Abstraction; System Relationships

PROGRAM
DEVELOPMENT

People design meaningful solutions for others by defining a problem’s
criteria and constraints, carefully considering the diverse needs and wants of
the community, and testing whether criteria and constraints were met.

Development teams that employ user-centered design create solutions that can
have a large societal impact, such as an app that allows people with speech
difficulties to translate hard-to-understand pronunciation into understandable
language. Use cases and test cases are created and analyzed to better meet the
needs of users and to evaluate whether criteria and constraints are met. An
example of a design constraint is that mobile applications must be optimized for
small screens and limited battery life.

Crosscutting Concepts: Human–Computer Interaction; Abstraction

Connection Within Framework: 3–5.Impacts of Computing.Culture

By the end of Grade 8: continued from previous page

K–12 Computer Science Framework 113

Concepts Including Crosscutting Concepts

Impacts of Computing

CULTURE Advancements in computing technology change people’s everyday
activities. Society is faced with tradeoffs due to the increasing globalization
and automation that computing brings.

The effects of globalization, such as the sharing of information and cultural
practices and the resulting cultural homogeneity, are increasingly possible because
of computing. Globalization, coupled with the automation of the production of
goods, allows access to labor that is less expensive and creates jobs that can easily
move across national boundaries. Online piracy has increased because of
information access that traverses national boundaries and varying legal systems.

Crosscutting Concepts: Human–Computer Interaction; System Relationships

Connection Within Framework: 6–8.Data and Analysis.Inference and Models

SOCIAL
INTERACTIONS

People can organize and engage around issues and topics of interest
through various communication platforms enabled by computing, such as
social networks and media outlets. These interactions allow issues to be
examined using multiple viewpoints from a diverse audience.

Social networks can play a large role in social and political movements by
allowing individuals to share ideas and opinions about common issues while
engaging with those who have different opinions. Computing provides a rich
environment for discourse but may result in people considering very limited
viewpoints from a limited audience.

Crosscutting Concepts: System Relationships; Human–Computer Interaction

Connections Within Framework: 3–5.Data and Analysis.Visualization and
Transformation; 9–12.Data and Analysis.Visualization and Transformation

SAFETY, LAW, AND
ETHICS

There are tradeoffs between allowing information to be public and
keeping information private and secure. People can be tricked into revealing
personal information when more public information is available about them
online.

Social engineering is based on tricking people into breaking security procedures
and can be thwarted by being aware of various kinds of attacks, such as emails
with false information and phishing. Security attacks often start with personal
information that is publicly available online. All users should be aware of the
personal information, especially financial information, that is stored on
the websites they use. Protecting personal online information requires
authentication measures that can often make it harder for authorized users
to access information.

Crosscutting Concepts: Privacy and Security; Communication and Coordination

Connection Within Framework: 6–8.Networks and the Internet.Cybersecurity

By the end of Grade 8: continued from previous page

114 K–12 Computer Science Framework

Concepts Including Crosscutting Concepts

By the end of Grade 12

Computing Systems

DEVICES Computing devices are often integrated with other systems, including
biological, mechanical, and social systems. These devices can share data
with one another. The usability, dependability, security, and accessibility of
these devices, and the systems they are integrated with, are important
considerations in their design as they evolve.

A medical device can be embedded inside a person to monitor and regulate his
or her health, a hearing aid (a type of assistive device) can filter out certain
frequencies and magnify others, a monitoring device installed in a motor vehicle
can track a person’s driving patterns and habits, and a facial recognition device
can be integrated into a security system to identify a person. The devices
embedded in everyday objects, vehicles, and buildings allow them to collect
and exchange data, creating a network (e.g., Internet of Things). The creation of
integrated or embedded systems is not an expectation at this level.

Crosscutting Concepts: System Relationships; Human–Computer Interaction;
Privacy and Security

Connections Within Framework: 9–12.Networks and the Internet.Network
Communication and Organization; 9–12.Data and Analysis.Collection; 9–12.
Impacts of Computing.Culture

HARDWARE AND
SOFTWARE

Levels of interaction exist between the hardware, software, and user of a
computing system. The most common levels of software that a user interacts
with include system software and applications. System software controls the
flow of information between hardware components used for input, output,
storage, and processing.

At its most basic level, a computer is composed of physical hardware and
electrical impulses. Multiple layers of software are built upon the hardware and
interact with the layers above and below them to reduce complexity. System
software manages a computing device’s resources so that software can interact
with hardware. For example, text editing software interacts with the operating
system to receive input from the keyboard, convert the input to bits for storage,
and interpret the bits as readable text to display on the monitor. System software
is used on many different types of devices, such as smart TVs, assistive devices,
virtual components, cloud components, and drones. Knowledge of specific,
advanced terms for computer architecture, such as BIOS, kernel, or bus, is not
expected at this level.

Crosscutting Concepts: Abstraction; Communication and Coordination; System
Relationships

Connections Within Framework: 9–12.Networks and the Internet.Network Commu-
nication and Organization; 9–12.Algorithms and Programming.Variables; 9–12.
Algorithms and Programming.Modularity

K–12 Computer Science Framework 115

Concepts Including Crosscutting Concepts

TROUBLESHOOTING Troubleshooting complex problems involves the use of multiple sources
when researching, evaluating, and implementing potential solutions.
Troubleshooting also relies on experience, such as when people recognize
that a problem is similar to one they have seen before or adapt solutions that
have worked in the past.

Troubleshooting information may come from external sources, such as user
manuals, online technical forums, or manufacturer websites. Distinguishing
between reliable and unreliable sources is important. Examples of complex
troubleshooting strategies include resolving connectivity problems, adjusting
system configurations and settings, ensuring hardware and software
compatibility, and transferring data from one device to another.

Crosscutting Concepts: Abstraction; System Relationships

Connection Within Framework: 9–12.Algorithms and Programming.Program
Development

By the end of Grade 12: continued from previous page

116 K–12 Computer Science Framework

Concepts Including Crosscutting Concepts

Networks and the Internet

NETWORK
COMMUNICATION
AND
ORGANIZATION

Network topology is determined, in part, by how many devices can be
supported. Each device is assigned an address that uniquely identifies it on
the network. The scalability and reliability of the Internet are enabled by the
hierarchy and redundancy in networks.

Large-scale coordination occurs among many different machines across multiple
paths every time a web page is opened or an image is viewed online. Devices
on the Internet are assigned an Internet Protocol (IP) address to allow them to
communicate. The design decisions that directed the coordination among
systems composing the Internet also allowed for scalability and reliability.
Scalability is the capability of a network to handle a growing amount of work or
its potential to be enlarged to accommodate that growth.

Crosscutting Concepts: Communication and Coordination; Abstraction; System
Relationships

Connections Within Framework: 9–12.Computing Systems.Devices; 9–12.
Computing Systems.Hardware and Software; 9–12.Impacts of Computing.Social
Interactions

CYBERSECURITY Network security depends on a combination of hardware, software, and
practices that control access to data and systems. The needs of users and
the sensitivity of data determine the level of security implemented.

Security measures may include physical security tokens, two-factor authentica-
tion, and biometric verification, but every security measure involves tradeoffs
between the accessibility and security of the system. Potential security problems,
such as denial-of-service attacks, ransomware, viruses, worms, spyware, and
phishing, exemplify why sensitive data should be securely stored and transmit-
ted. The timely and reliable access to data and information services by autho-
rized users, referred to as availability, is ensured through adequate bandwidth,
backups, and other measures.

Crosscutting Concepts: Privacy and Security; System Relationships; Human–
Computer Interaction

Connection Within Framework: 9–12.Algorithms and Programming.Algorithms

By the end of Grade 12: continued from previous page

K–12 Computer Science Framework 117

Concepts Including Crosscutting Concepts

Data and Analysis

COLLECTION Data is constantly collected or generated through automated processes that
are not always evident, raising privacy concerns. The different collection
methods and tools that are used influence the amount and quality of the
data that is observed and recorded.

Data can be collected and aggregated across millions of people, even when
they are not actively engaging with or physically near the data collection
devices. This automated and nonevident collection can raise privacy concerns,
such as social media sites mining an account even when the user is not online.
Other examples include surveillance video used in a store to track customers for
security or information about purchase habits or the monitoring of road traffic to
change signals in real time to improve road efficiency without drivers being
aware. Methods and devices for collecting data can differ by the amount of
storage required, level of detail collected, and sampling rates. For example,
ultrasonic range finders are good at long distances and are very accurate, as
compared to infrared range finders, which are better for short distances.
Computer models and simulations produce large amounts of data used in
analysis.

Crosscutting Concept: Privacy and Security

Connections Within Framework: 9–12.Computing Systems.Devices; 9–12.
Impacts of Computing.Safety, Law, and Ethics

STORAGE Data can be composed of multiple data elements that relate to one another.
For example, population data may contain information about age, gender,
and height. People make choices about how data elements are organized
and where data is stored. These choices affect cost, speed, reliability,
accessibility, privacy, and integrity.

A data model combines data elements and describes the relationships among
the elements. Data models represent choices made about which data elements
are available and feasible to collect. Storing data locally may increase security
but decrease accessibility. Storing data on a cloud-based, redundant storage
system may increase accessibility but reduce security, as it can be accessed
online easily, even by unauthorized users. Data redundancies and backups are
useful for restoring data when integrity is compromised.

Crosscutting Concepts: System Relationships; Privacy and Security;
Communication and Coordination

Connection Within Framework: 9–12.Algorithms and Programming.Algorithms

By the end of Grade 12: continued from previous page

118 K–12 Computer Science Framework

Concepts Including Crosscutting Concepts

VISUALIZATION AND
TRANSFORMATION

People transform, generalize, simplify, and present large data sets in
different ways to influence how other people interpret and understand
the underlying information. Examples include visualization, aggregation,
rearrangement, and application of mathematical operations.

Visualizations, such as infographics, can obscure data and positively or negatively
influence people’s views of the data. People use software tools or programming
to create powerful, interactive data visualizations and perform a range of
mathematical operations to transform and analyze data. Examples of
mathematical operations include those related to aggregation, such as
summing and averaging. The same data set can be visualized or transformed
to support multiple sides of an issue.

Crosscutting Concepts: Abstraction; Human–Computer Interaction

Connection Within Framework: 6–8.Impacts of Computing.Social Interactions

INFERENCE AND
MODELS

The accuracy of predictions or inferences depends upon the limitations of
the computer model and the data the model is built upon. The amount,
quality, and diversity of data and the features chosen can affect the quality of
a model and ability to understand a system. Predictions or inferences are
tested to validate models.

Large data sets are used to make models used for inference or predictions, such
as forecasting earthquakes, traffic patterns, or the results of car crashes. Larger
quantities and higher quality of collected data will tend to improve the accuracy
of models. For example, using data from 1,000 car crashes would generally yield
a more accurate model than using data from 100 crashes. Additionally, car
crashes provide a wide variety of data points, such as impact speed, car make
and model, and passenger type, and this data is useful in the development of
injury prevention measures.

Crosscutting Concepts: Abstraction; Privacy and Security

By the end of Grade 12: continued from previous page

K–12 Computer Science Framework 119

Concepts Including Crosscutting Concepts

Algorithms and Programming

ALGORITHMS People evaluate and select algorithms based on performance, reusability,
and ease of implementation. Knowledge of common algorithms improves
how people develop software, secure data, and store information.

Some algorithms may be easier to implement in a particular programming
language, work faster, require less memory to store data, and be applicable in a
wider variety of situations than other algorithms. Algorithms used to search and
sort data are common in a variety of software applications. Encryption algorithms
are used to secure data, and compression algorithms make data storage more
efficient. At this level, analysis may involve simple calculations of steps. Analysis
using sophisticated mathematical notation to classify algorithm performance,
such as Big-O notation, is not expected.

Crosscutting Concepts: Abstraction; Privacy and Security

Connections Within Framework: 9–12.Data and Analysis.Storage; 9–12.Net-
works and the Internet.Cybersecurity

VARIABLES Data structures are used to manage program complexity. Programmers
choose data structures based on functionality, storage, and performance
tradeoffs.

A list is a common type of data structure that is used to facilitate the efficient
storage, ordering, and retrieval of values and various other operations on its
contents. Tradeoffs are associated with choosing different types of lists.
Knowledge of advanced data structures, such as stacks, queues, trees, and hash
tables, is not expected. User-defined types and object-oriented programming
are optional concepts at this level.

Crosscutting Concepts: Abstraction; System Relationships

Connection Within Framework: 6–8.Computing Systems.Hardware and Software

CONTROL Programmers consider tradeoffs related to implementation, readability, and
program performance when selecting and combining control structures.

Implementation includes the choice of programming language, which affects
the time and effort required to create a program. Readability refers to how
clear the program is to other programmers and can be improved through
documentation. The discussion of performance is limited to a theoretical
understanding of execution time and storage requirements; a quantitative
analysis is not expected. Control structures at this level may include conditional
statements, loops, event handlers, and recursion. Recursion is a control
technique in which a procedure calls itself and is appropriate when problems
can be expressed in terms of smaller versions of themselves. Recursion is an
optional concept at this level.

Crosscutting Concepts: Abstraction; System Relationships

By the end of Grade 12: continued from previous page

120 K–12 Computer Science Framework

Concepts Including Crosscutting Concepts

MODULARITY Complex programs are designed as systems of interacting modules, each
with a specific role, coordinating for a common overall purpose. These
modules can be procedures within a program; combinations of data and
procedures; or independent, but interrelated, programs. Modules allow for
better management of complex tasks.

Software applications require a sophisticated approach to design that uses a
systems perspective. For example, object-oriented programming decomposes
programs into modules called objects that pair data with methods (variables with
procedures). The focus at this level is understanding a program as a system
with relationships between modules. The choice of implementation, such as
programming language or paradigm, may vary.

Crosscutting Concepts: System Relationships; Abstraction

Connection Within Framework: 9–12.Computing Systems.Hardware and
Software

PROGRAM DEVEL-
OPMENT

Diverse teams can develop programs with a broad impact through careful
review and by drawing on the strengths of members in different roles.
Design decisions often involve tradeoffs. The development of complex
programs is aided by resources such as libraries and tools to edit and
manage parts of the program. Systematic analysis is critical for identifying
the effects of lingering bugs.

As programs grow more complex, the choice of resources that aid program
development becomes increasingly important. These resources include libraries,
integrated development environments, and debugging tools. Systematic
analysis includes the testing of program performance and functionality, followed
by end-user testing. A common tradeoff in program development is sometimes
referred to as “Fast/Good/Cheap: Pick Two”: one can develop software quickly,
with high quality, or with little use of resources (for example, money or number
of people), but the project manager may choose only two of the three criteria.

Crosscutting Concepts: Human–Computer Interaction; System Relationships;
Abstraction

Connection Within Framework: 9–12.Computing Systems.Troubleshooting

By the end of Grade 12: continued from previous page

K–12 Computer Science Framework 121

Concepts Including Crosscutting Concepts

Impacts of Computing

CULTURE The design and use of computing technologies and artifacts can improve,
worsen, or maintain inequitable access to information and opportunities.

While many people have direct access to computing throughout their day,
many others are still underserved or simply do not have access. Some of these
challenges are related to the design of computing technologies, as in the case
of technologies that are difficult for senior citizens and people with physical
disabilities to use. Other equity deficits, such as minimal exposure to computing,
access to education, and training opportunities, are related to larger, systemic
problems in society.

Crosscutting Concepts: Human–Computer Interaction; System Relationships

Connection Within Framework: 9–12.Computing Systems.Devices

SOCIAL
INTERACTIONS

Many aspects of society, especially careers, have been affected by the
degree of communication afforded by computing. The increased
connectivity between people in different cultures and in different career
fields has changed the nature and content of many careers.

Careers have evolved, and new careers have emerged. For example, social
media managers take advantage of social media platforms to guide the
presence of a product or company and increase interaction with their audience.
Global connectivity has also changed how teams in different fields, such as
computer science and biology, work together. For example, the online genetic
database made available by the Human Genome Project, the algorithms
required to analyze the data, and the ability for scientists around the world to
share information have accelerated the pace of medical discoveries and led to
the new field of computational biology.

Crosscutting Concepts: System Relationships; Human–Computer Interaction

Connection Within Framework: 9–12.Networks and the Internet.Network
Communication and Organization

SAFETY, LAW, AND
ETHICS

Laws govern many aspects of computing, such as privacy, data, property,
information, and identity. These laws can have beneficial and harmful effects,
such as expediting or delaying advancements in computing and protecting
or infringing upon people’s rights. International differences in laws and ethics
have implications for computing.

Legal issues in computing, such as those related to the use of the Internet, cover
many areas of law, reflect an evolving technological field, and can involve
tradeoffs. For examples, laws that mandate the blocking of some file-sharing
websites may reduce online piracy but can restrict the right to freedom of
information. Firewalls can be used to block harmful viruses and malware but
can also be used for media censorship. Access to certain websites, like social
networking sites, may vary depending on a nation’s laws and may be blocked for
political purposes.

Crosscutting Concepts: System Relationships; Privacy and Security; Abstraction

Connection Within Framework: 9–12.Data and Analysis.Collection

By the end of Grade 12: continued from previous page

Guidance for
Standards Developers

7

K-12 Computer Science Framework 125

Guidance for Standards Developers

The K–12 Computer Science Framework is designed to serve as a foundation from which all states,
districts, and organizations can develop computer science education standards for K–12 students.
Standards play a vital role in achieving the vision of computer science for all students. They
democratize computer science by setting learning goals for all students and the expectation that
all schools will provide opportunities to achieve those goals so that all children, regardless of their
age, race, gender, disability, socioeconomic level, or what school they attend, will be able to have
engaging and rigorous computer science experiences. As illustrated in Figure 7.1, the framework
provides the building blocks by which states can develop their own standards.

Figure 7.1: Building blocks for standards

F R A M E WO R K : K N O W, D O S TA N DA R D S : K N O W A N D D O

Know

Know

Know
Know

Do

Do

Do

Do

126 K–12 Computer Science Framework

Guidance for Standards Developers

Standards are an essential component of a larger education plan and can provide a foundation with
which to align the other components, such as curriculum, instruction, professional development,
and assessment, to better prepare students for success in college and the workplace. They also
communicate core learning goals to policymakers, administrators, teachers, parents, and students.
Computer science standards provide insight into a discipline that will be new to many teachers and
offer inspirational starting points to create projects, lessons, and activities. Standards facilitate the
sharing of content, such as lessons, among teachers and are a useful way to categorize that content
for easy search and retrieval. Consistent standards promote alignment and connections among
different districts within a state so that if a student moves to a different school, he or she will not end
up with different expectations.

The purpose of this guide is to provide information and recommendations for the development of
K–12 computer science education standards

• at the beginning to set the criteria and prepare standards writers,
• during the writing process with examples and exercises, and
• afterward to help evaluate the outcome.

This guide was developed in partnership with the nonprofit education organization Achieve based on
recommendations for standards developers from the National Research Council (NRC, 2012). It also
uses criteria and procedures Achieve has established and refined based on aspects of quality
academic content standards.

These categories are described in Table 7.1.

Table 7.1: Guidance for Standards Developers summary

C R I T E R I A S U M M A R Y

Rigor:
What is the intellectual demand
of the standards?

Rigor is the quintessential hallmark of exemplary standards. It is the measure of
how closely a set of standards represents the content and cognitive demand
necessary for students to succeed in credit-bearing college courses without
remediation and in entry-level, high-quality, high-growth jobs. We recommend
that standards writers establish and articulate the appropriate level of rigor in
computer science to prepare all students for success in college and careers.

Focus/Manageability:
Have choices been made about
what is most important for
students to learn and what is a
manageable amount of
content?

High-quality standards establish priorities about the concepts and skills that
should be acquired by graduation from high school. Choices should be based on
the knowledge and skills essential for students to succeed in postsecondary
education and the world of work. A sharpened focus also helps ensure that the
cumulative knowledge and skills students are expected to learn is manageable.
We recommend grade-level standards that clearly communicate student expecta-
tions at each stage. In the case of grade-banded standards, we recommend that
guidance be provided for users in creating their own grade-level standards or
mapping standards to specific courses.

Table continues on next page

K–12 Computer Science Framework 127

Guidance for Standards Developers

Specificity:
Are the standards specific
enough to convey the level of
performance expected of
students?

High-quality standards are precise and provide sufficient detail to convey the level
of performance expected without being overly prescriptive. Standards that
maintain a relatively consistent level of precision (“grain size”) are easier to
understand and use. Those that are overly broad or vague leave too much open
to interpretation, increasing the likelihood that students will be held to different
levels of performance, while standards that are too prescriptive encourage a
checklist approach to teaching and learning that undermines students’ opportuni-
ties to demonstrate their understanding in equitable ways. We recommend that
standards developers write standards that are neither too broad nor too specific
and that the grain size is consistent across the standards.

Equity/Diversity:
Were the standards written for
all students by a diverse set of
writers and reviewers? Are
students able to demonstrate
performance in multiple ways?

Standards, just like other aspects of education infrastructure, play a role in creating
an equitable environment for all students. We recommend that diversity and
equity be attended to not only in the makeup of the groups writing, advising, and
reviewing the standards but also in the standards content by designing standards
that can be engaged in by ALL students and are flexible enough to allow them to
demonstrate proficiency in multiple ways.

Clarity/Accessibility:
Are the standards clearly
written and presented in an
error-free, legible, easy-to-use
format that is accessible to the
general public?

Clarity requires more than just plain and jargon-free prose that is free of errors.
Standards also must be communicated in language that can gain widespread
acceptance not only by postsecondary faculty but also by employers, teachers,
parents, school boards, legislators, and others who have a stake in schooling. A
straightforward, functional format facilitates user access. We recommend that
standards writers consider the knowledge level of users of the standards by
clarifying terms and providing examples.

Coherence/Progression:
Do the standards convey a
unified vision of the discipline,
do they establish connections
among the major areas of
study, and do they show a
meaningful progression of
content across the grades?

The way in which standards are categorized and broken out into supporting
strands should reflect a coherent structure of the discipline and/or reveal signifi-
cant relationships among the strands and how the study of one complements the
study of another. If standards suggest a progression, that progression should be
meaningful and appropriate across the grades or grade spans. We recommend
that standards writers clearly communicate progressions of content and practices
in the standards.

Measurability:
Is each standard measurable,
observable, or verifiable in
some way?

In general, standards should focus on the results, rather than the processes of
teaching and learning. Standards should make use of performance verbs that call
for students to demonstrate knowledge and skills and should avoid using those
that refer to learning activities, such as examine, investigate, and explore, or to
cognitive processes that are hard to verify, such as appreciate. We recommend
ensuring that each standard is measurable.

Integration of Practices
and Concepts:
Does each standard reflect at
least one practice and one
concept?

To ensure that instruction reflects both knowing and doing computer science, the
core concepts of computer science should be taught alongside the practices by
fully integrating them at the standards level. We recommend that standards
integrate the computer science practices with the concept statements.

Connections to
Other Disciplines:
Are there explicit ways in which
computer science is shown to
be relevant in other subjects?

There are many possible areas of overlap between computer science and subject
areas such as math, science, and engineering as well as humanities, including
languages, social studies, art, and music. Making intentional connections between
computer science standards and academic standards in other disciplines will
promote a more coherent education experience. We recommend that computer
science standards be written to align with and connect to (possibly via clarifying
examples) state math and science standards, as well as standards from other
disciplines.

Table continued from previous page

128 K–12 Computer Science Framework

Guidance for Standards Developers

Recommendations
Recommendation 1: Rigor. We recommend that standards establish and articulate
the appropriate level of rigor in computer science to prepare all students for success
in college and careers.

High-quality standards create foundational expectations for all students, rather than just those
interested in advanced study, and prepare students for a variety of postsecondary experiences.

Standards aim to prepare students for the demands of the world they will encounter after graduation.
That preparation is even more difficult when the job market changes rapidly as the influence of technol-
ogy in the workforce grows steadily. It is therefore critical that standards describe rigorous expectations
in computer science for all students. In addition, some students will want to specialize in computer
science fields and require an even higher level of intellectual demand than is necessary for all students.

To facilitate appropriate use of the standards, differentiating between technical career standards
for advanced courses and core academic standards for all students is crucial. The former may be
equivalent to the expectations for specialized computer science courses—in particular, career and
technical education pathways. In contrast, standards for all students describe expectations that will be
important for every student to meet to help ensure their future success in any chosen field.

For example, the different standards in Figure 7.2 are based on the same practice and concept in the
9–12 grade band of the K–12 Computer Science Framework, and they compare a standard for an
advanced course with a standard for all students.

Figure 7.2: Differentiating rigor for all students

Practice: Testing and Refining
Computational Artifacts

Concept: Systematic analysis is critical for identifying
the effects of lingering bugs. (9–12.Algorithms and
Programming.Program Development)

Example 1: Test and refine software components by using unit tests to identify lingering bugs
during an agile programming development cycle.

Example 2: Test and refine a program using a systematic debugging process as part of a larger
iterative development process.

The first standard would be more appropriate for high school students in a specialized career and
technical education course, as it calls for a product (software components) and methodologies (unit
tests and agile development) that are specific to the software industry. The second standard sets a
goal for all students that reflects a more general product (any computer program) yet still maintains
rigor through the expectation of a systematic and iterative process.

K–12 Computer Science Framework 129

Guidance for Standards Developers

Standards meant for all students should have sufficient rigor to help prepare students to enter and
succeed in entry-level postsecondary courses that require skills such as critical thinking, problem
solving, and computational literacy. Rigor applies equally to practices and concepts.

The K–12 Computer Science Framework was
written to describe a vision of computer science
education for all students, so most standards
based on the framework could be written at a level
of rigor intended for all students, rather than for
students in advanced courses. Care should be taken
to align the standards with grade-appropriate student
abilities. It is possible that feedback or current system
constraints could influence standards writers to try to
limit the rigor of the standards, particularly at the
elementary grade levels. However, research into
students’ use of sequence and iteration and practice
of other aspects of computational thinking indicates
that students can learn computer science at young
ages (Flannery et al., 2013) when they have the
support and opportunities to do so. Standards writers
should be careful to keep rigor at a high enough level
for younger students to ensure that all students have
access to high-quality computer science education.
The concept statements in the K–2 and 3–5 grade
bands of the framework have been reviewed by early
childhood computer science education experts and
provide a blueprint for the appropriate expectations
for elementary-age students. See Figure 7.3 for
criteria to determine if a standard has the right
amount of rigor.

Computer Science Applies
to Many College Majors
and Careers

Business:
Business professionals can apply

processes learned in computer

science to expand a business and

optimize for efficiency.

Music:
Musicians can design sounds,

effects, and filters. They can create a

system to control music using

gestures to manipulate sounds and

visuals for a live show.

Biology:
Researchers can analyze a database

of genetic sequences for genes

similar to a known cancer gene.

Sports:
Coaches can create algorithms

to analyze the performance of

athletes as a training tool or

develop strategies using real-time

data on the field.

130 K–12 Computer Science Framework

Guidance for Standards Developers

Figure 7.3: Determining the right amount of rigor for a standard

A standard should meet all three of these criteria:

• Does the standard require an appropriate level of conceptual understanding?
• Does it require application of that concept?
• Does it require engagement with a practice?

To help ensure that standards set expectations that prepare students for success in entry-level
postsecondary courses and careers, feedback from employers and faculty members, including
from two-year institutions, is crucial. The involvement of reviewers with a perspective on student
preparation for postsecondary courses and careers will provide valuable information about the rigor
necessary in the standards.

Recommendation 2: Focus/Manageability. We recommend that standards be limited
in number, focus on the content and practices described in the framework, and be
written for individual grade levels or courses.

High-quality standards prioritize the concepts and skills that should be acquired by students. A
sharpened focus helps ensure that the knowledge and skills students are expected to learn are
important and manageable in any given grade or course.

A clear focus within standards helps teachers see and prioritize learning experiences for students.
Therefore the framework was developed to describe a core set of concepts and practices, which were
selected using criteria developed by the writing team and vetted by the computer science community
during review periods. Standards based on the framework should focus on the set of concepts and
practices described here, rather than incorporating additional topics that could be included in
advanced computer science courses.1 See Table 7.2 for examples of important topics that are essen-
tial or not essential for all students to learn.

1 Additional topics would be appropriate for standards for advanced courses, if they are clearly designated as such and not as standards for all students
(see Recommendation 1).

K–12 Computer Science Framework 131

Guidance for Standards Developers

Table 7.2: Examples of essential and non-essential topics

I M P O R TA N T A N D E S S E N T I A L F O R
A L L S T U D E N T S

I M P O R TA N T B U T N O T E S S E N T I A L
F O R A L L S T U D E N T S

• Troubleshooting strategies

• Searching and sorting

• Digital data representations

• Basic online security measures

• Operating systems

• Algorithmic efficiency

• Relational databases

• Cryptography methods

This focus will help ensure that the limited time available for computer science education throughout K–12
is concentrated on those areas that are priorities for all students. Additional standards could be added for
elective computer science courses, but those should be noted as elective and not for all students. Figure
7.4 provides an example of a standard appropriately focused on the concept.

Figure 7.4: Focusing on the concept

Practice: Recognizing and Defining Computational Problems
Concept: Different software tools used to access data may store the data differently. The type of
data being stored and the level of detail represented by that data affect the storage requirements.
(3–5.Data and Analysis.Storage)

Standard that focuses on the concept: Evaluate the appropriateness of different ways to store data
based on the type of data and the level of detail.

Standard that includes extraneous concepts: Evaluate the appropriateness of binary, octal, and
hexadecimal representations of data and convert between bits and bytes.

Another aspect of appropriate focus is that standards are developed for either specific grade levels or
courses. Although the framework’s statements are written for grade bands (i.e., K–2, 3–5, 6–8, 9–12)
and more accurately, grade-band endpoints, standards developed from the framework should be
written for individual grade levels. For example, the framework’s expectations by the end of 5th grade
(Grades 3–5) may inform standards in all three grade levels—Grades 3, 4, and 5—or in Grade 5 only.
If grade level standards are not possible, guidance should be provided about how users of the
standards can create their own grade level or course-specific student expectations. Narrowing the
focus of student goals at each grade level or course—either by standards writers or by district and
state administrators—will enable alignment across the education system and help ensure that
teachers have the support they need to focus on particular standards during a course or grade level.

132 K–12 Computer Science Framework

Guidance for Standards Developers

Recommendation 3: Specificity. We recommend that standards writers attend to the
specificity of the standards to ensure that they are neither too broad nor too specific
and that the grain size, when possible, is consistent across the standards.

High-quality standards are precise and provide sufficient detail to convey the level of performance
expected without being overly prescriptive. Those that maintain a relatively consistent level of
precision tend to have consistent interpretation and use. Conversely, those that are overly broad or
vague leave too much open to interpretation and are implemented inconsistently, and overly specific
standards reduce students’ opportunities to demonstrate their understanding in flexible ways.

Writing standards to a useful level of specificity requires a balance between being too vague and too
specific (see Figure 7.5). A consistent and appropriate level of specificity will help ensure that teachers
have the understanding and support they need to help students reach the standards. When standards
are too broad, a teacher must interpret the intent of the standards—to decide what types of connections
are to be understood and what depth of complexities of problems are to be solved. Useful specificity
can often be added with boundary statements, which specify what content is not expected, clarifying
the scope of material to be taught. For example, students by the end of eighth grade should know that
network protocols exist to allow different computers to communicate with one another but not the
structure of messages sent using a specific protocol, such as HTTP (Hypertext Transfer Protocol).

Figure 7.5: A spectrum of specificity in standards

Standard Comments

Too vague Use conditionals in a program. This standard lacks context and is too
vague to be assessed.

Balanced Design an algorithm that efficiently
uses conditional statements to repre-
sent multiple branches of execution.

This standard specifies the type of
product and a level of rigor yet allows
for multiple contexts in which to
demonstrate performance.

Too specific Create an app to help friends decide
between watching a comedy, action,
or science fiction movie by using three
if-statements.

The context for this standard is too
specific and does not allow for a range
of demonstrations of performance.

Consistency in the level of specificity across the standards is also important (see Figure 7.6). In prac-
tice, standards within the same document may be interpreted to have equal levels of specificity and
may thus be allotted equal amounts of instructional time. It is more difficult for educators, curriculum
designers, and assessment developers to use standards that vary in scope across grade levels.

K–12 Computer Science Framework 133

Guidance for Standards Developers

Figure 7.6: Calibrating specificity across standards writers

Create a set of three to five standards that vary in specificity and have different
standards writers (as small groups or individuals) put them in order and compare.
Discuss the differences and characteristics of each standard, then select the one or two
examples of specificity that the group should be aiming for when writing standards.

Recommendation 4: Equity/Diversity. We recommend that diversity and equity
be attended to by developing standards that allow for engagement by ALL
students and allow for flexibility in how students may demonstrate proficiency.
The makeup of the groups of stakeholders writing and reviewing the standards
should be diverse.

The framework is based on the belief that all students, regardless of race, gender, socioeconomic
class, or disability, when given appropriate support, can learn all of the concepts and practices
described in the framework.

Equitable standards create expectations for students with a variety of college and career interests,
allow for flexible demonstrations of performance, do not assume out-of-school preparation, and are
written by stakeholders with diverse perspectives.

Standards that are created for all students focus on the core aspects of computer science that are
applicable to a wide range of college and career choices, rather than extraneous content with narrow
application. The concepts and practices of the K–12 Computer Science Framework represent literacy
in computer science for all students, not just students interested in majoring in the field or pursuing
technical careers.

If computer science education is expected of all students, it must also be equitable and allow students
to demonstrate their knowledge and skill in multiple ways. When a standard is particularly prescriptive,
such as when it resembles the scope (“grain size”) of an assessment item, it prescribes a particular way
that students should demonstrate their understanding, creating the potential for an inequitable
classroom environment. Equitable standards are not biased for or against students from a particular
background. This includes making standards accessible to students with special needs or English
language learners.

134 K–12 Computer Science Framework

Guidance for Standards Developers

Equitable standards do not presuppose content knowledge, and therefore a level of preparation, in
computer science but instead include all key stages in a learning progression. Incomplete learning
progressions require out-of-school opportunities to fill in gaps in knowledge, putting students without
these experiences at a disadvantage.

Developing equitable standards requires diverse stakeholders. The writers and reviewers involved in
developing the standards should include diverse representation from two- and four-year institutions;
the research community; industry; and most important, K–12 education, including expertise in early
childhood, English language learners, and students with disabilities. This diversity will help ensure that
different perspectives and areas of expertise are involved in each standard’s development decision
and that writers and reviewers can review each statement and example for possible bias. For example,
creating standards that require specific equipment or software that is not readily accessible will
disadvantage certain groups, such as rural or poor communities.

Recommendation 5: Clarity/Accessibility. We recommend that standards writers
clarify standards for the average user of the standards, including defining terms and
providing examples.

High-quality standards are clearly written and presented in an error-free, legible, easy-to-use format
that is accessible to both the targeted instructors and the general public.

Writing clear and accessible standards is challenging. As content experts, writers may tend to drift into
technical language. Additionally, computer scientists may use terms in different ways than many of the
users of the standards. Precision in meaning is important but so is an awareness of the audience that
will be reading and implementing the standards. In all cases, standards writers must attend to the
technical understanding of the user as well as the actual content of the standard.

K–12 Computer Science Framework 135

Guidance for Standards Developers

Computer science standards writers should consider the potential technical understanding of the
average user, given the current scenarios in which computer science is taught. Rather than decreasing
rigor, writers should consider how to frame standards language so that it is accessible to educators
who are teaching computer science outside of their primary area of certification and may not have a
computer science background. In most elementary schools, teachers are generalists, with no special
training in computer science. Policymakers and community members also need to understand the
educational priorities communicated by the standards. It is therefore critical for computer science
standards to be accessible to many different audiences.

Precise use of language is very helpful in creating a common understanding of student outcomes
among varied users, such as educators, curriculum developers, and assessment designers.
Clarifications could come via boundary statements that describe the limits of standards; parenthetical
notes within the standards themselves; or separate, nonassessable statements that accompany the
standards. This is particularly true when words like abstraction, parallelization, and even algorithms
may be used differently in different disciplines. Technical terms should be defined and, as often as
possible, plain language restatements added so that the readers, particularly teachers, will be able to
understand and apply the standards consistently for both curriculum and assessment. Explanations,
simpler language, and/or detailed descriptions would be helpful to ensure consistent application of
the standards (see Figure 7.7).

Figure 7.7: Example of technical terms versus simple language in standards

Standard 1: Use an API by calling a procedure and supplying arguments with appropriate data
types to efficiently employ high-level functionality.

Standard 2: Select and use a procedure from a library of procedures (API) and provide
appropriate input as arguments to replace repetitive code.

The second standard retains “API” (application programming interface), adds more accessible
wording such as “library of procedures,” and prefaces the specific programming term “argument”
with the more general “appropriate input.” The second standard continues to use the terms
“procedure” and “arguments” as these are necessary terms that provide clarity. Accessible
standards use key terminology to provide clarity and avoid extraneous terms and technical jargon.

Examples are very useful to communicate the intent of the standards to users. However, when
examples are used, we recommend that multiple examples always be present. The use of single
examples can often seem to be a limiting factor or inadvertent prescription of curriculum
(Achieve, 2010).

136 K–12 Computer Science Framework

Guidance for Standards Developers

Recommendation 6: Coherence/Progression. We recommend that standards be
organized as progressions that support student learning of content and practices
over multiple grades.

Coherence refers to how well a set of standards conveys a unified vision of the discipline, establishing
connections among the major areas of study and showing a meaningful progression of content across
grade levels and grade spans.

Research on student learning indicates that students need explicit help to connect new ideas to ideas
that have been learned previously (Marzano, 2004). To support teachers as they help students make
these connections, standards should describe developmentally appropriate levels of a learning
progression, and the learning progressions embedded in standards must be made apparent to users.
This is true for both the content and the practices, as students’ facilities with each of the practices
change and deepen over time when they are provided adequate instructional opportunities. Separate
displays that show the progression of each dimension through K–12 have been very useful to
educators in implementing standards.

The framework writers were careful to describe coherent progressions of content and skills across
grade bands. Standards based on the framework, however, may be written for individual grade levels.
In that case, care should be taken to ensure that the progression from grade level to grade level is
coherent and research-based as much as possible and that student knowledge and practice will build
on the foundation of content and skills learned previously. The progressions in the framework revolve
around a central subconcept in each core concept area and reflect developmentally appropriate
milestones that grow in sophistication from kindergarten to Grade 12 (see Figure 7.8).

K–12 Computer Science Framework 137

Guidance for Standards Developers

Figure 7.8: Example learning progression

Computing Systems.Hardware and Software

By the end of Grade 2: A computing system is composed of hardware and software. Hardware
consists of physical components, while software provides instructions for the system. These
instructions are represented in a form that a computer can understand.

By the end of Grade 5: Hardware and software work together as a system to accomplish tasks,
such as sending, receiving, processing, and storing units of information as bits. Bits serve as the
basic unit of data in computing systems and can represent a variety of information.

By the end of Grade 8: Hardware and software determine a computing system’s capability to
store and process information. The design or selection of a computing system involves multiple
considerations and potential tradeoffs, such as functionality, cost, size, speed, accessibility, and
aesthetics.

By the end of Grade 12: Levels of interaction exist between the hardware, software, and user of
a computing system. The most common levels of software that a user interacts with include
system software and applications. System software controls the flow of information between
hardware components used for input, output, storage, and processing.

Recommendation 7: Measurability. We recommend ensuring that each standard is
objective and measurable.

Standards should focus on the results, rather than the processes of teaching and learning. They should
make use of performance verbs that call for students to demonstrate knowledge and skills, with each
standard being measurable, observable, or verifiable in some way.

To be effective for teaching and learning, standards must be observable and measurable. What the
standard intends a student to understand or be able to do should be clear. Accordingly, teachers
need to be able to clearly determine if the expectation has been met to know whether students need
further help with these concepts.

However, standards do not necessarily need to be written such that they could be tested on a large-
scale summative assessment. They simply need to be observable by some measure, including by a
classroom teacher. Careful selection of the verbs used in each standard, along with specificity of
content, will help ensure that the standard is observable and measurable (see Table 7.3).

138 K–12 Computer Science Framework

Guidance for Standards Developers

Table 7.3: Examples of verbs that assist with measurability

V E R B S T H AT R E F E R
T O O B S E R VA B L E
P E R F O R M A N C E
O R R E S U LT S

V E R B S T H AT R E F E R
T O L E A R N I N G
A C T I V I T I E S

V E R B S T H AT R E F E R
T O C O G N I T I V E
P R O C E S S E S

Create
Develop
Test
Refine
Communicate

Examine
Explore
Observe
Discover

Know
Understand
Appreciate

Recommendation 8: Integration of Practices and Concepts. We recommend that
standards integrate the computer science practices with the concept statements.

To realize the vision described in this framework and to ensure that all students can become proficient
users of computer science knowledge and practice, the practices and concepts should be integrated
in the standards, as well as in curriculum and instruction.

Previous sets of education standards in many different disciplines included separate practice and
content standards. However, because teachers and curriculum designers were more familiar and
comfortable with the content standards, the practice standards were very rarely implemented. They
were separate, so they were typically left out or “covered” in the first week of school and then
forgotten, or they were used irregularly. One efficient way to help ensure that practices are included
throughout instruction is to integrate them completely with the content standards.

More important, part of the vision for computer science education is that students will become
proficient at using and applying knowledge—not just memorizing it. If application and deep
understanding is indeed the goal, education standards should be written to reflect that goal. By
combining a practice with each concept statement to create a standard, the resulting standards
more closely describe the behavior, abilities, and deep knowledge we want students to have.

K–12 Computer Science Framework 139

Guidance for Standards Developers

Figure 7.9 below shows an example of how to integrate a computer science practice with a concept
statement from the framework.

Figure 7.9: Example of integrating a practice and concept to create a standard

The following steps were taken to create this example.

1. The writer chose a specific practice statement within Practice 3: Recognizing and Defining
Computational Problems.

2. The writer selected a portion of the Data and Analysis concept statement as a context for
applying the practice.

3. The practice and concept were combined to create an observable performance expectation that
calls for the application of the practice within the context of the concept. The bolded verb stem
in the practice statement helped to focus the action in the standard.

P R A C T I C E C O N C E P T S TA N D A R D

Recognizing and Defining
Computational Problems

Evaluate whether it is
appropriate and feasible

to solve a problem
computationally.

Different software tools
used to access data may
store the data differently.
The type of data being
stored and the level of

detail represented by that
data affect the storage

requirements.

Evaluate the
appropriateness of different

ways to store data
computationally based on

the type of data and level of
detail.

Data and Analysis
By the end of 5th grade...

Data and Analysis
(5th grade)

140 K–12 Computer Science Framework

Guidance for Standards Developers

Figure 7.10 provides another example of integrating a practice and concept to create a standard. By
using the checklist provided in Recommendation 1: Rigor, we see that this standard requires an
appropriate level of content understanding, as reflected in the concept portion [highlighted in blue]
and engagement with a practice [highlighted in magenta], which facilitates the application of the
content [the standard as a whole].

Figure 7.10: Second example of integrating a practice and concept to create a standard

It is not expected, or recommended, that each concept statement be combined with statements from
all of the practices to form multiple standards. For example, although there are a total of 68 concept
statements and seven practices (each of which has multiple statements), a K–12 standard set should not
expect to have 476 standards (i.e., 68 multiplied by 7). Only the practice statements that are most
relevant to a concept statement should be considered. In addition, remember that integrating practices
with concept statements often introduces more rigor to the student performance expectation than
would be seen in the concept statement on its own because students now will have to do something
with that conceptual knowledge. Care should be taken to ensure that the particular combination of
practices and concepts does not introduce a higher level of rigor than is appropriate for the grade band.
Figure 7.11 provides an exercise for standards developers using these considerations.

P R A C T I C E C O N C E P T S TA N D A R D

Fostering an Inclusive
Computing Culture

Address the needs of
diverse end users during

the design process to
produce artifacts with broad

accessibility and usability.

Design decisions often
involve tradeoffs.

Address the needs of
diverse end users in the
design of a program and

analyze the tradeoffs
associated with serving a
wide range of end users.

Algorithms and
Programming

By the end of 12th grade...

Algorithms and
Programming
(10th grade)

K–12 Computer Science Framework 141

Guidance for Standards Developers

Figure 7.11: Exercise in standards creation

Recommendation 9: Connections to Other Disciplines. We recommend that
computer science standards be written to align with and connect to other academic
standards, such as mathematics and science.

There are many possible ways computer science can connect with other subjects, like math, science,
and engineering, as well as humanities, such as languages, social studies, art, and music. Making
intentional connections between computer science standards and academic standards in other
disciplines will help teachers understand how computer science can connect with their implementa-
tion of standards in other subjects and promote more coherent education experiences for students.
While related, technology/digital literacy and computer science are distinct subjects.

With limited time in the classroom, students’ education should be as coherent as possible. When
content in different disciplines is related or connecting, it is important to point out those connections
to educators and to facilitate them through standards. When potential alignments are not recognized
in standards, extra instructional time may be required to cover everything. For example, if a core math
concept is required for third grade computer science standards but is not included in math standards
until fifth grade, third grade teachers would need to add that concept into their computer science
curriculum, or they might end up ignoring the computer science content due to an impression that it
is too overwhelming.

In addition to aligning grade-level expectations, it can also be helpful to include clarifying examples
that align and connect to math, science, and engineering standards (see Figure 7.12).

1. As a group, pick the same concept and practice and create a standard from the pairing.
2. Compare each other’s proposed standard.
3. Ask:
 a. Is the rigor appropriate for the grade band?
 b. Is the performance expectation clear?
 c. Does it accurately reflect components of the concept and practice?
 d. Is this an appropriate standard for all students or just those going on to
 extended study?

142 K–12 Computer Science Framework

Guidance for Standards Developers

Figure 7.12: Example of a computer science standard that connects with a science standard

Standard: Test and refine a program using a wide range of inputs until criteria and constraints
are met.

This standard connects with Next Generation Science Standard MS-ETS1-2 Engineering Design: Evaluate competing

design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Attention should also be given to connections to subjects outside of science, technology, engineer-
ing, and math, such as language arts literacy standards for technical subjects. Since computer science
is not currently required or assessed in most states, illustrating how the standards connect to and help
meet existing standards in other subjects will be very useful. These connections can be made through
ancillary materials like crosswalks and examples and can be used as a tool to integrate content from
other subjects into computer science or embed computer science content into other subjects. This is
particularly true for Grades K–8, as budget constraints may not allow for separate computer science
teachers in elementary and middle schools.

In 2010, the Association for Computing Machinery’s Running on Empty reported that “there is deep
and widespread confusion within the states as to what should constitute and how to differentiate
technology education, literacy and fluency; information technology education; and computer science
as an academic subject” (p. 9). While it is plausible to combine digital/technology literacy standards
with academic computer science standards, care should be taken so as not to confuse addressing one
with addressing the other. For example, while a digital presentation can be used to communicate a
team’s software development process, the creation of the digital presentation, or the general use of
office productivity software, is not a computer science activity. Again, Running on Empty reported that
“consistent with efforts to improve ‘technology literacy,’ states are focused almost exclusively on
skill-based aspects of computing (such as using a computer in other learning activities) and have few
standards on the conceptual aspects of computer science that lay the foundation for innovation and
deeper study in the field (for example, develop an understanding of an algorithm)” (p. 7). If combining
digital literacy and computer science into one set of standards, it is important that the distinction be
kept clear through separately identifiable strands.

K–12 Computer Science Framework 143

References
Achieve. (2010). International science benchmarking report. http://www.achieve.org/files/InternationalScience

BenchmarkingReport.pdf

Association for Computing Machinery & Computer Science Teachers Association. (2010). Running on empty: The failure to
teach K–12 computer science in the digital age. Retrieved from http://runningonempty.acm.org/fullreport2.pdf

Flannery, L. P., Kazakoff, E. R., Bontá, P., Silverman, B., Bers, M. U., & Resnick, M. (2013, June). Designing ScratchJr: Support
for early childhood learning through computer programming. In Proceedings of the 12th International Conference on
Interaction Design and Children (pp. 1–10).

Marzano, R. J. (2004). Building background knowledge for academic achievement: Research on what works in schools.
Alexandria, VA: Association for Supervision and Curriculum Development.

National Research Council. (2012). A Framework for K–12 science education: Practices, crosscutting concepts, and core ideas.
Committee on a Conceptual Framework for New K–12 Science Education Standards. Board on Science Education, Division
of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.

Guidance for Standards Developers

http://www.achieve.org/files/InternationalScienceBenchmarkingReport.pdf
http://www.achieve.org/files/InternationalScienceBenchmarkingReport.pdf
http://runningonempty.acm.org/fullreport2.pdf

Implementation Guidance:
Curriculum, Course Pathways,

and Teacher Development

8

K-12 Computer Science Framework 147

Implementation Guidance: Curriculum,
Course Pathways, and Teacher Development

A surge of interest across the nation has led many schools, districts, and states to start figuring out
how to increase student opportunities for learning computer science. They are tackling tough ques-
tions, such as: How does learning build over time? What technical infrastructure is required to offer
computer science? How does computer science fit in the school schedule? How will enough teachers
be prepared? Although grassroots efforts to integrate computer science at the classroom level have
existed for decades,1 current efforts seek to also address computer science at the state and district
levels, at large scale, and for all students. At any grade level, the implementation of computer science
is accompanied by the unique opportunities and challenges of adding a new discipline to the scope
of K–12 education.

Large-scale computer science education reform is still a new frontier, and states and districts are trying
a variety of approaches. As of September 2016, governors of six states pledged to work towards three
policy goals: offer at least one computer science course in all of their high schools, fund professional
development opportunities to build teacher capacity, and create comprehensive K–12 computer
science standards (Governors for Computer Science, 2016). Large school districts in cities including
New York City, San Francisco, and Oakland have launched multi-year initiatives that will lead to every
school offering computer science, with some also aiming to provide instruction to every single stu-
dent. Chicago Public Schools has gone one step further by becoming the largest district in the nation
to create a computer science graduation requirement for all students (Chicago Public Schools, 2016).

1 The use of the Logo programming language in K–12 schools peaked in the early to mid-1980s. Logo’s goals went beyond introducing computing
fundamentals. Logo included the opportunity to create with technology, and in the process, develop (computational) thinking skills.

148 K–12 Computer Science Framework

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

This chapter suggests topics for state boards and departments of education to consider as they
develop and adopt policies to support the expansion of K–12 computer science, and it provides
guidance to district- and school-level administrators, teachers, and informal educators who are
planning to implement computer science. K–12 education is a
complex system composed of many interacting parts that
must coordinate to achieve a common purpose: computer
science for all students. This chapter specifically addresses
curriculum, assessment, course pathways, technical infrastruc-
ture, stakeholder involvement, preservice programs, certifica-
tion, and professional development. The vision, concepts, and
practices of the framework play a key role in each of these
pieces. Standards development also plays a vital role in the
implementation of computer science education and is dis-
cussed in the Guidance for Standards Developers chapter.

The topics discussed in this chapter are meant to spark further
conversations that lead to a sustainable infrastructure for
computer science education (see Figure 8.1 for recommended state policies). Due to the increasing
demand for computer science and genuine concern from parents, educators, and industry that students
are being left behind, reform efforts can easily focus on access and scale at the expense of quality and
sustainability. These goals are not mutually exclusive. States, districts, and schools should initiate an
intentional and reflective process that maintains review and reassessment at key stages with the goal of
improving execution and outcomes.

At a time when only a handful of states have have begun to initiate statewide efforts to implement
computer science education, there are no clear models that demonstrate long-term success.

States, districts, and
schools should initiate an
intentional and reflective
process that maintains
review and reassessment
at key stages with
the goal of improving
execution and outcomes.

K–12 Computer Science Framework 149

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

The following recommendations are excerpted from Making Computer Science Fundamen-
tal to K–12 Education: Eight Policy Ideas (Code.org, 2015).

Define Computer Science and Establish K–12 Computer Science Standards: Standards
provide a foundation for aligning all other policies under a coherent vision of computer
science for all students.

Allocate Funding for Rigorous Professional Development and Course Support: States
and districts can dedicate funding for developing the capacity to teach computer science,
including course materials and technical infrastructure.

Implement Clear Certification Pathways: In addition to the development of traditional
certification pathways, incentives and expedited, alternative pathways will help address the
short- and long-term need for computer science teachers.

Create Incentives at Institutions of Higher Education to Offer Computer Science to
Preservice Teachers: States can create competitive grants for schools of education to
increase the number of preservice teachers who can teach computer science and incentivize
partnership opportunities between local school districts and schools of education to create
direct pathways for teachers into high-need school districts.

Establish Dedicated Computer Science Positions in State and Local Education
Authorities: Any sustained effort to scale computer science education will require leadership
positions at the state and district levels.

Require that All Secondary Schools Offer Computer Science: While kindergarten through
12th grade computer science education is the long-term vision, states and districts can act in
the short term by requiring all high schools to offer at least one computer science course.

Allow Computer Science to Count as a Core Graduation Requirement: States that allow
computer science to count as a graduation requirement, rather than an elective, see increases
in the number of students taking advanced computer science courses and increases in partici-
pation from underrepresented minorities.*

Allow Computer Science to Count as an Admission Requirement for Institutions of
Higher Education: Policies that do not allow computer science to satisfy an admission require-
ment can reduce the incentive for students to take computer science, even when it fulfills a
high school graduation requirement.

* Review of 2012 Advanced Placement® (AP) data on a per-state basis for AP Computer Science and AP Calculus provided by the College Board.

Figure 8.1: Recommended policies that promote and support computer science education

150 K–12 Computer Science Framework

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

The conversations started in this chapter must be revisited frequently and informed by lessons learned
within each state and across the nation. Rather than thinking about sustainability as establishing
reforms that “last and stay the same,” policymakers and decisionmakers must think of sustainability as
establishing reforms that “last and change” (Century, 2009, para. 7). Due to the evolving nature of
computer science education, implementation plans must be flexible and adaptable, while heeding the
public’s demand for high-quality computer science experiences for all students.

Incorporating Computer Science into K–12 Systems
Adding computer science to K–12 education requires more than just adding or revising content. A
thoughtful approach to including computer science in K–12 instruction will also encompass course and
instructional pathways; technical infrastructure; and buy-in from important stakeholder groups, such as
administrators, parents, teachers, and support staff. It is important to consider implementation for all
students, regardless of race, gender, disability, socioeconomic
status, or English language proficiency, as inequities can be
propagated when implementing large-scale reforms. Recruit-
ment, expansion, and equity should be actively monitored
during the entire implementation process (Margolis, Goode, &
Chapman, 2015).

Curriculum
As computer science opportunities increase across the nation,
both in school and out of school, students will be entering
classrooms with a wide range of experiences in computer
science. Some students will have had a great deal of early
exposure, while other students will have had none. To meet
the needs of all learners, teachers need to be prepared to teach this wide range of students equitably.
This section describes some of the many considerations educators will have to take into account as they
select and/or develop meaningful curriculum experiences for all students. Although the framework can
guide curriculum considerations at a high level, performance expectations (i.e., standards) that integrate
the framework’s concepts and practices should ultimately guide what happens in the classroom. Formal
curriculum developers and content providers can support classroom teachers, especially those new to
computer science, by developing high-quality curriculum materials aligned to a coherent K–12 vision.

Uses and limitations for curriculum development
When laying out a comprehensive, K–12 computer science curriculum based on the framework,
understanding the breadth of approaches that the framework promotes as well as its limitations is
important.

Recruitment, expansion,
and equity should be
actively monitored
during the entire
implementation process
(Margolis, Goode, &
Chapman, 2015).

K–12 Computer Science Framework 151

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

The framework provides broad expectations for K–12 computer science that are designed to be
inclusive of diverse curriculum approaches. Schools, districts, and states should look to the framework
as a document that provides clarity of content (the “what”) but does not dictate implementation (the
“how”). For example, different elementary school curricula that teach young students to program, one
with physical robots and one within an online, virtual environment, are both able to instill a knowledge
of algorithms (K–2.Algorithms and Programming.Algorithms) and help students understand how the
computer responds to commands (K–2.Algorithms and Programming.Control).

The concept and practice statements are big ideas that can be used to inform lessons, a series of
lessons, or curriculum units. Organizations that use the Understanding by Design curriculum design
model can use the framework to inform the “enduring understandings” and “essential questions” for
lessons and units (Wiggins & McTighe, 2005). Enduring understandings, similar to the framework’s
concept statements, illuminate the major, recurring ideas that lend significance and meaning to
individual curriculum elements, such as facts and skills, and essential questions reflect the key inquiries
that focus curriculum around deeper understanding.

Further, the framework lays out the big ideas that students should understand by the end of a grade
band but does not encompass all of the learning that can take place within that grade band. Although
the framework focuses on an essential foundation in computer science, schools and teachers are
encouraged to create additional supporting material and extend instructional experiences beyond these
baseline competencies, while giving special consideration to developmental appropriateness. Schools
and classrooms that are already exceeding the expectations in the framework should be encouraged to
continue doing so while others can use the framework as an aspiration and starting point.

152 K–12 Computer Science Framework

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

Figure 8.2: Concepts and practices of the K–12 Computer Science Framework

Considerations for curriculum alignment
When selecting or developing curriculum, instructional materials, and computing tools (such as
programming environments) that align to the framework, reflecting on the following pedagogical
considerations is important.

First, computer science curricula should provide a comprehensive view of computer science
informed by the five core concepts and seven core practices of computer science as delineated in the
framework (see Figure 8.2). Unfortunately, computer science and programming (or coding) are often
considered synonymous in K–12 education. This belief leads to courses that focus only on program-
ming and leave out other areas of computer science that influence our world, such as the Internet,
data, and cultural and societal perspectives on computing.

Second, curricula aligned to the framework should be
developmentally appropriate per the grade-band
progressions in the framework. Ascertaining the extent to
which the content aligns to the concepts and practices in the
framework, including grade-band placement, is important.
Further, because the concepts and practices are framed in
K–12 learning progressions, it is important that grade-level
curricula fit into a coherent K–12 experience. The framework
supports pathways of courses that are offered in every grade
or only in particular grades within grade bands; states and
districts will decide based on their local context.

Core Concepts

1. Computing Systems
2. Networks and the Internet
3. Data and Analysis
4. Algorithms and Programming
5. Impacts of Computing

Core Practices

1. Fostering an Inclusive Computing Culture
2. Collaborating Around Computing
3. Recognizing and Defining Computational Problems
4. Developing and Using Abstractions
5. Creating Computational Artifacts
6. Testing and Refining Computational Artifacts
7. Communicating About Computing

Curricula should integrate
the concepts and
practices into meaningful
experiences for students,
rather than solely
focus on the concepts.

K–12 Computer Science Framework 153

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

Third, curricula should integrate the concepts and practices into meaningful experiences for students,
rather than solely focus on the concepts. Lessons and activities should provide not only content-rich
opportunities for students to learn about computer science concepts but also meaningful opportuni-
ties for students to engage in computer science practices. Daily instruction and student activities
should integrate the computer science practices with one another and with the concepts. Additionally,
some concepts may be easily addressed in the same lesson or activity; the descriptive material for
each concept statement provides guidance around which ideas connect to one another.

Finally, it is important to consider whether learning a programming environment is the main focus of a
curriculum or if the use of programming tools is driven by addressing the concepts and practices. A
“tool-first” approach may not provide all of the experiences needed for a student to engage fully in the
concepts and practices of the framework. Instead, curriculum should be designed from a “content-first”
perspective, in which programming tools, equipment (e.g., robots), and even languages, are a vehicle
for learning the concepts and practices, rather than becoming the focus themselves.

Socially relevant and culturally situated
Curriculum should feature projects that offer opportunities to create innovative technologies
within socially relevant and culturally situated contexts. In a survey of the career preferences of
college-bound students ages 13–17 (see Figure 8.3), students who value having the power to create
and discover new things and working in a cutting-edge field also show a high interest in computer
science (WGBH Educational Foundation & ACM, 2009). The concepts and practices of the framework
provide opportunities for students to engage in these types of activities, such as creating a variety of
computational artifacts across multiple areas of computer science.

154 K–12 Computer Science Framework

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

Figure 8.3: Characteristics of careers that students deem important

The survey also found that the students who are the least likely to show interest in computer science
are those who like working with people in an interconnected, social, and innovative way and those
who find making a difference in other people’s lives important for a career (WGBH Educational
Foundation & ACM, 2009). Further, female students were more likely than males to rate making a
difference as “extremely important” in a career. These results may speak more to the stereotypes that
students have of computer science as being incompatible
with these desires, rather than the reality of how computer
science is practiced in careers and the influence it can have on
others. Whatever the reason for these differences, curriculum
plays a role in addressing misperceptions around careers in
computer science, and the framework’s concepts and practic-
es can guide experiences that reach all students. For exam-
ple, the core concept Impacts of Computing highlights the
influence computing has on people’s social and cultural
interactions at the community and societal level, addressing
students’ desires to engage in fields that make a difference in
others’ lives. The framework’s practice of Creating Computa-
tional Artifacts emphasizes the creation of a “computational
artifact . . . to address a societal issue” (P5.Creating Computational Artifacts.2). Additional practices,
such as Fostering an Inclusive Computing Culture, Collaborating Around Computing, and Communi-

Students who value
having the power to
create and discover new
things and working in a
cutting-edge field also
show a high interest in
computer science.

0% 20% 40% 60% 80% 100%

0% 20% 40% 60% 80% 100%

43%

32%

47%

56%

Please indicate how important each of the following is to you, personally, in considering which career to get into.
(Percent rating at “extremely important”)

Having the power to create
and discover new things

Having the power to do good and
doing work that makes a difference

 Boys Girls

Source: WGBH Educational Foundation and the Association for Computing Machinery, 2009

K–12 Computer Science Framework 155

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

cating About Computing, emphasize the social nature of engaging in computer science. Computer
science is a project-based, transformational discipline, and students will be more engaged with
projects that focus on real-world and community problems for social good (Goldweber et al., 2013).

Projects should acknowledge and build on the rich cultural backgrounds, or “funds of knowledge,”
students bring to the classroom. Funds of knowledge refers to the “historically accumulated and
culturally developed bodies of knowledge and skills essential for household or individual functioning
and well-being” (Moll, Amanti, Neff, & Gonzalez, 1992, p. 133). By learning about students and their
families, teachers can develop the perspective that “the households of their students contain rich
cultural and cognitive resources and that these resources can and should be used in their classroom in
order to provide culturally responsive and meaningful lessons that tap students’ prior knowledge”
(Lopez, n.d., para. 3). The Exploring Computer Science curriculum, also discussed in the Equity in
Computer Science Education chapter, uses culturally situated design tools (Eglash, 2003) to
“encourage students to artistically express computing design concepts from Latino/a, African
American, and Native American history as well as cultural activities in dance, skateboarding, graffiti
art, and more” (Margolis et al., 2012, p. 76). Through culturally situated lessons (see Figure 8.4 for an
example), students build personal relationships with computer science concepts and practices and
ultimately feel like computer science is more relevant to their lives. The use of culturally situated
computing contexts has additional benefits, such as the possibility of counteracting barriers to
increasing minority participation in computing. Seeing how aspects of a student’s culture are based
in computing concepts and practices can reduce identity conflict, in which students feel like their
personal or cultural identity is incompatible with participation or academic success in a subject (e.g.,
“my people don’t do computing”) (Eglash, Bennett, O’Donnell, Jennings, & Cintorino, 2006).

Figure 8.4: Example of a culturally situated computing activity

156 K–12 Computer Science Framework

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

Socially relevant and culturally situated contexts offer opportunities for integrating computer science
with other subjects. Teachers should look to their students’ communities for examples of projects and
applications of computer science education that can be aligned to the framework. However, these
projects should be carefully crafted and scaffolded for beginners. Research in introductory undergradu-
ate courses suggests that developing authentic, humanitarian-focused projects that are motivating to
novices is hard, as humanitarian problems are complex by their very nature (Rader, Hakkarinen, Moskal,
& Hellman, 2011). On the other hand, some researchers have noted that novices tend to favor assign-
ments that they perceive as easy and fun and shy away from problems that are too open-ended (Cliburn
& Miller, 2008). Thus, with consideration toward students’ experiences with computing and their ability
levels, socially relevant and culturally situated curricula hold promise for engaging all students.

Assessment
Assessments are used in multiple ways in K–12 education. This section focuses on assessment at the
classroom level, rather than the high-stakes testing that can dominate the conversation of reform in
other subject areas. Generally, classroom assessment can be formative or summative. Formative
assessment is used during classroom activities to modify instruction or provide students with
immediate feedback about their learning or progress, whereas summative assessment is used to
evaluate or measure student learning at the end of a period of instruction (Black, Harrison, Lee,
Marshall, & William, 2003). End-of-course summative assessments and programmatic exams are
currently rare in computer science outside of Advanced Placement® (AP), International Baccalaureate,
or industry-recognized certification exams in career and technical education (CTE) programs. There
are several important facets of classroom computer science assessments to consider: the use of
authentic tasks, the breadth of concepts being assessed, and the special role computers can play in
delivering instruction and measuring performance.

Project-based and portfolio-based assessment methods are critical for authentically measuring perfor-
mance in the computer science classroom. Performance tasks are typically more flexible than tradi-
tional assessments that seek one solution or answer to an assessment question. These tasks allow
students to demonstrate their understanding in multiple ways that highlight their creativity, interests,
and understanding. Consequently, these assessments can provide an educator with a richer under-
standing of students’ knowledge and reasoning. These nontraditional assessments can be useful in
measuring students’ use of algorithms, computational thinking, and problem solving—which are
generally hard to measure with multiple-choice questions. Practices identified in the framework, such
as Communicating About Computing, Collaborating Around Computing, and Creating Computation-
al Artifacts, are key to emphasize in any computer science performance task. The AP Computer
Science Principles course employs performance tasks and accompanying rubrics that can be freely
accessed, which teachers may find useful as a starting point for designing their own assessments.

Assessment should reflect multiple aspects of computer science as defined by the five core
concepts and seven practices of the framework. Most computer science assessments focus primarily

K–12 Computer Science Framework 157

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

on programming (Yadav et al., 2015) and ignore other aspects of computer science, such as data
analysis or the impact of computing on society. Multiple concepts can be addressed simultaneously.
For example, teachers can assess students’ ability to analyze the advantages and disadvantages of
different encryption algorithms, which addresses the idea of algorithmic performance (Algorithms and
Programming) as well as cybersecurity (Networks and the Internet). Even when programming is the
focus, students should be assessed on not only their ability to write the program but also their ability
to communicate the product’s significance and development process (Communicating About
Computing), including the collaboration among members (Collaborating Around Computing). For
example, students can submit planning documents used to produce the program, do a presentation
on the impact that their program will have on a target audience, and write a reflection on how the
team worked to put the program together.

Compared to other subjects, computer science provides a unique opportunity for taking advantage of
online learning and computerized assessment while maintaining an authentic experience for demon-
strating performance. Platforms dedicated to computer science allow students to create programs
such as games, apps, and simulations within an environment that also collects data, analyzes achieve-
ment, and communicates progress to both students and teachers. These platforms have the ability to
naturally integrate instruction, practice, and assessment. Online learning and assessment platforms
also have the potential for reaching students in rural school districts, which are often at a disadvantage
in finding teachers in high-need subject areas, such as computer science.

Course and Instructional Pathways
The framework describes a K–12 experience in computer science that builds sophistication over time.
Course and instructional pathways that treat computer science as a discipline, as opposed to an
individual elective, are required to implement this vision. Courses and curriculum do not exist in an
instructional vacuum and should take into account the concepts and practices as laid out across the
four grade bands in the framework. This section explores options for building a K–12 instructional
pathway in computer science.

Integrated computer science courses
Rather than adding to educators’ already full plates, computer science can aid the current movement
toward interdisciplinary education. Classrooms can infuse computer science into practically every
other subject area, including mathematics, science, English language arts, world languages, social
sciences, fine arts, service learning, health and physical education, and CTE programs. Throughout
the framework, opportunities are provided for integration and application within other content areas.
For example, concepts within Computing Systems, when combined with the framework’s practices,
could be incorporated into fine arts as students produce works of art that include digital music,
animation, and lighting systems. The organization of networks in Networks and the Internet can be
used to reinforce ideas of networks in other content areas, such as the connections between charac-
ters in a story in English language arts or the ways that contagious diseases are spread through

158 K–12 Computer Science Framework

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

populations in health and physical education. Programming can assist in the collection or representa-
tion of data in mathematics or science classrooms, tying together the Data and Analysis and Algo-
rithms and Programming core concepts. And the Impacts of Computing concept statements can be
reinforced as students consider the effects of computing in world languages (such as translation
software), service learning (how technology can allow people in different locations to connect, com-
municate, and collaborate), or social sciences (such as the interaction of social media and political
movements or the use of technology to monitor communications). The concepts and practices of the
K–12 Computer Science Framework can be integrated into other content areas in numerous other
ways as well.

There is a history of rich examples of age-appropriate, integrated computing experiences at the K–8
level (e.g., Papert, 1980). In his classic book on children and computing, Mindstorms, Seymour Papert
describes a situation that reflects common interactions between two children who are working and
playing with the Logo programming language. The experience begins with a student wanting to draw
a flower on the computer screen. One student asks the other whether she has any pre-existing pro-
grams they can use to draw the petals. They modify a program that draws an arc multiple times until
they realize how to use their understanding of angles to create a full petal and then multiple petals.
Then, the students proceed to create a garden of flowers by repeating the procedure for drawing a
single flower and using variables to randomize the size and location. This example, shown in Figure
8.5, illustrates the integration of mathematics, programming, and play.

Figure 8.5: An example of the iterative process students could use to create a garden of flowers

K–12 Computer Science Framework 159

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

Some recent efforts have incorporated computer science into mathematics and science classrooms.
Bootstrap and Project GUTS (Growing Up Thinking Scientifically), two programs sponsored by the
National Science Foundation, demonstrate that students can learn computer science concepts and
practices within the overarching goals of their algebra and science classes. Bootstrap (2016) uses
video game programming as an approach to teach topics such as the Pythagorean theorem, distance
formula, and linear equations. Project GUTS (2016) incorporates modeling and simulation projects into
Earth, life, and physical science to explore topics such as water pollution, ecosystems, and chemical
reactions. The experiences within these programs are modular and can range from a couple lessons to
several weeks of content. While the effects on instructional focus and subsequent performance on
assessments remain under exploration, many similar programs exist around the nation (e.g., Algorith-
mic Geometry, 2016; UC Davis C-STEM Center, 2016), reinforcing this approach as a model that can
be used to expose students to computer science by using pre-existing resources.

It should be noted that integration is a matter of implementation at the school or district level, not
within standards at the state level. Computer science can be embedded within pre-existing subjects,
but state-level standards for computer science, which clarify specific disciplinary expectations, should
remain a discrete set of standards or strand, rather than be mixed with the performance expectations
of other subjects. A few states have successfully created computer science standards as discrete
strands within a larger set of standards. For example, Indiana has created a computer science strand
within its overall science standards (Indiana Department of Education, 2016), and Massachusetts has
combined Digital Literacy and Computer Science Standards with discrete strands for each that build
off one another (Massachusetts Department of Elementary and Secondary Education, 2016). The
Massachusetts standards delineate the differences between computer literacy, digital citizenship, and
computer science. These approaches allow schools and districts to decide how (curriculum), when
(grade level), and/or where (subject) computer science is integrated. Additionally, this standards-level
integration does not necessarily mean computer science is embedded into other subjects, as it is
equally viable that computer science instruction exists as independent courses that integrate content
from other disciplines.

Independent computer science courses
Offering computer science as independent, standalone courses has the benefit of not affecting
instructional time in other subjects. In elementary school, computer science can exist as a special
class, similar to music, art, and physical education, through which students rotate during their weekly
schedule. In middle school, computer science can be a dedicated semester- or year-long experience
at a particular grade level or available at all grade levels. In high school, computer science can be
taught in introductory courses; AP courses; and specialized courses such as cybersecurity, game
design, or robotics. Unfortunately, when computer science is offered as an independent course, it is
often as an elective. Computer science as an elective presents a disadvantage compared to integrat-
ing computer science into a subject that all students take, such as mathematics or science, because

160 K–12 Computer Science Framework

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

fewer students will be exposed to computer science. Furthermore, students who have preconceived
misperceptions about computer science may self-select out of computer science before they even
attempt a course. It should be noted that standalone computer science courses and interdisciplinary
integration are not mutually exclusive—a computer science course can feature projects that are
couched within the context of other disciplines, such as math, science, and art.

Revising technology and computer literacy courses
One of the most natural places to increase computer science participation is through pre-existing
technology education credits and courses. Many states and districts have some type of technology or
computer literacy graduation credit, which can be modified to allow computer science to count. For
example, in 2015, Maryland revised its one-credit technology graduation requirement and allowed
computer science courses to satisfy this requirement. Previously, only courses that fit a perspective on
technology that included engineering, manufacturing, transportation, agriculture, or medicine, were
allowed to count (Maryland State Department of Education, 2005). Before 2015, some Maryland
school districts had already taken the initiative to integrate computer science into their general
technology education courses, leading to an increase in the percentage of underrepresented minori-
ties and females taking computer science compared to districts that still considered computer science
an elective (Wilson & Yongpradit, 2015). Since the change to the technology graduation requirement,
Maryland has reported a dramatic increase in computer science enrollment (CTE Maryland, 2016).
Whether or not technology education courses count as
a graduation requirement, revising outdated courses to
focus on computer science is practical and appropriate.

Building the Pathway
With the introduction of a new subject into the K–12
space, schools will need to develop plans for gradual
implementation. These plans should account for early
years of implementation in which students in the upper
grades will not have had the basic fundamentals and
may not learn the full progression of concepts and
practices before graduation.

Schools may choose to convene working groups with
individual disciplines (e.g., math, science, humanities)
to determine if any of the concepts or practices are
already covered or strongly aligned with current curricu-
lum. The framework provides opportunities for schools
to think critically about how to implement computer
science, such as via collaborative lessons between
disciplines or integration into other disciplines.

Considerations for
Staffing Classes

Districts and schools must
consider how to develop and
staff new computer science courses
with limited staffing resources;
what to look for when hiring
computer science teachers; and
how to increase the pool of com-
puter science teachers at a time
when there is a shortage across
science, technology, engineering,
and math subjects (Barth, Dillon,
Hull, & Higgins, 2016).

K–12 Computer Science Framework 161

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

Much the same way they bring together vertical teams for traditional subjects, such as math and
science, schools or districts may want to bring together multigrade vertical teams for computer
science. These teams can communicate positive approaches, lessons, or examples that are particularly
engaging to students and areas of strength or weakness in student learning. As designers of a new
subject area, these vertical teams can become professional learning communities, exploring the
computer science content or resources from higher or lower grades to develop better understanding
of expected student outcomes.

School systems that have been working toward district-wide computer science provide an example of
the level of collaboration required to make such a reform possible. From the beginning of their effort,
Broward County Public Schools in Florida, the seventh largest school district in the nation, formed a
computer science implementation team consisting of representatives responsible for certification,
professional development, media communications, school leadership, career technical education, and
science, technology, engineering, and math (STEM). This team set up a structure for interdepartmental
collaboration and the development of a comprehensive district strategy, resulting in a sharp increase
in student participation. Before implementation, in school year 2013–14, nine high schools and no
middle or elementary schools offered computer science, serving a total of 240 computer science
students. After two years, 33 high schools, 34 middle schools, and 113 elementary schools were
offering computer science. More than 38,000 students took computer science in 2015–16 (Broward
County Public Schools, 2016). This dramatic change required training close to 1,000 teachers through
a partnership with professional development providers, higher education institutions, and local
community stakeholders (White House, 2016). Despite increased access, districts must continually
temper growth with quality, evidence-based implementation. For example, Broward County Public
Schools is currently researching and evaluating a model for integrating computer science and STEM
into the elementary schedule.

Overall, the development of a K–12 sequence will be an ongoing and iterative process informed by
an emerging computer science pedagogy that is inclusive of all learners (Snodgrass, Israel, & Reese,
2016). Schools and districts will need to be flexible in their implementation and potentially explore
multiple options before deciding upon the right fit for their students and community.

The following sections highlight different models at the K–8 and high school levels (see Figure 8.6).
These different models can be mixed and matched to create custom K–12 pathways (see Figure 8.7).

Elementary and middle school models
Implementing computer science instruction at the K–8 level is typically more flexible than in high
school. Potential models include instructional units dedicated to computer science within general
technology and media arts classes, dedicated weekly computing classes offered as electives, and
integration of computer science instruction into other content areas. These courses could be taught
by a variety of teachers, such as elementary classroom teachers, subject area teachers in school (e.g.,
mathematics, science, technology, music, art, library/media arts), or dedicated computer science

162 K–12 Computer Science Framework

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

teachers. Regardless of the instructional delivery model, attention should be given to aligning those
instructional experiences with the framework’s progressions.

High school models
The content of the framework is intended for all students, and although some districts have been
motivated to create a computer science graduation requirement, all high schools should offer at least
one rigorous computer science course. More than half of all high school seniors do not attend a high
school that offers any computer science courses (Change the Equation, 2016). According to analyses
of data from the National Center for Education Statistics, the percentage of high school seniors taking
computer science in 2015 (22%) (Change the Equation, 2016) was less than in 1990 (25%), with a low
of 19% in 2009 (Nord et al., 2011). States and districts that are
looking to take a first step toward computer science for all
students should consider starting by offering computer
science in every high school.

Over the course of the rollout of a K–12 pathway in computer
science for all students, high school programs will have to
adapt as more students enter high school with prior experi-
ences from elementary and middle school. High school
courses that are designed for students who have had no prior
computer science experience will continue to play an important role in catching up students who, for
example, opted out of elective courses in earlier grades or transferred between school districts.

As students who gained introductory experiences choose to continue their study of computer science,
schools and districts may choose to include more advanced course offerings and pathways, such as
courses that can provide college entrance credit, career and technical preparation, or AP courses. The
content of these courses will be more advanced than that of the framework, but the framework’s
organization of core concepts and practices can provide a guiding structure. For example, AP, by
definition, is considered college-level coursework, and the framework provides the fundamental
understandings that precede these experiences. Conversely, some existing courses, such as AP
Computer Science A, focus primarily on algorithms and programming, and schools will need to
implement supplemental courses or curricula to address the full set of concepts in the framework’s
9–12 grade band.

States and districts must consider whether computer science lives within an academic pathway, a CTE
pathway, or both, as the choice will affect access, funding, and course content. In 2010, the Associa-
tion for Computing Machinery’s report Running on Empty observed,

All high schools should
offer at least one
rigorous computer
science course.

K–12 Computer Science Framework 163

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

A major contributing factor to the confusion about computer science education is that
computer science or “computing” courses are organized into various departments within
schools. For example, some are placed in the mathematics or science departments and
some are within the vocational education departments. When computer science courses
are placed within vocational education, they are rarely part of the “core” curriculum a
student must take. Further, the curriculum for these courses tends to be focused on broader
IT or technology skills rather than deeper computer science concepts. (Wilson, Sudol,
Stephenson, & Stehlik, 2010, p. 15)

CTE courses, with their career focus, provide great opportunities for students who want to explore
specializations within computer science, such as cybersecurity, database administration, and software
engineering. There is room for both academic and CTE classification of computer science. For exam-
ple, the early, foundational courses in a CTE program of study
can be dual-coded as part of the CTE pathway as well as a
math, science, or technology credit. CTE systems differ from
state to state, and it is recommended that states provide clear
guidance to districts so that as many students as possible can
have foundational computer science experiences and partici-
pate in CTE pathways.

Example K–12 pathways
Ultimately, course pathways will be driven by the framework
and/or standards that are developed based on the framework.
The number of standards, whether they are grade-specific or
grade-banded and voluntary or mandatory, will affect the
choice of pathway. In the examples pathways in Figure 8.7, a computer science experience can range
from a few hours a week to a semester- or year-long course. For the purpose of the example path-
ways, it is assumed that elementary school includes Grades K–5, middle school covers Grades 6–8,
and high school covers Grades 9–12. The different models in each grade band are organized by an
estimate of the total amount of focused computer science instructional time that the model may allow,
from least to greatest. The examples within each grade band are not mutually exclusive; many options
can be combined to create additional avenues for computer science instruction.

Foundational courses
in a CTE program of
study can be dual-coded
as part of the CTE
pathway as well as a
math, science, or
technology credit.

164 K–12 Computer Science Framework

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

Figure 8.6: Options for implementing computer science

E L E M E N TA R Y S C H O O L I M P L E M E N TAT I O N E X A M P L E S

H I G H S C H O O L I M P L E M E N TAT I O N E X A M P L E S

M I D D L E S C H O O L I M P L E M E N TAT I O N E X A M P L E S

Integrated into the general classroom

Integrated into math, science, or other subjects

Integrated into math, science, or other subjects

Integrated into an existing special (e.g., media arts, computer lab)

Introductory course

Independent course at a particular grade level or at all grade levels

Independent special (similar to Science, Music, Art; kindergarten to Grade 5)

Advanced course (e.g., honors, AP)

Specialized courses (e.g., game design, cybersecurity,
networking, robotics)

K–12 Computer Science Framework 165

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

Figure 8.7: Multiple pathways for implementing K–12 computer science

Technical Infrastructure
Modern computer science education does not often require complex hardware setups or software
configurations, although some basic technical conditions must be in place. The availability of comput-
ers is the greater concern and should be addressed in a district’s or state’s technology plan by involv-
ing a school system’s office of technology as a key stakeholder in computer science education initia-
tives. Some common strategies at the classroom level for dealing with a lack of computers are having
students work collaboratively on devices, having a center for computing (particularly at the elementary
level), or rotating students through a computing experience within a weekly schedule.

Integrated into
math, science,
other subjects

+
Independent course

at a particular
grade level

Introductory course
+

AP Computer
Science

+
Specialized courses

S A M P L E K -12 C O M P U T E R S C I E N C E PAT H WAY S

Elementary
School

Middle
School

High
School

Broad & Deep Exposure Moderate Exposure Basic Exposure

Independent special
(similar to Science,

Music, Art;
kindergarten to

Grade 5)

Integrated into the
general classroom

Independent course
at a particular

grade level

Introductory course
+

Specialized courses

Integrated into the
general classroom

Integrated into
math, science,
other subjects

Introductory course

166 K–12 Computer Science Framework

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

While some computer science education curricula and programs require locally installed resources,
many computer science education programs and curricula now exist online. Using programs and
curricula that are online allows schools to cover much of the curriculum with browser-capable devices,
including netbooks and, in some cases, tablets. Using a web-based solution to support computer
science curricula does require a robust network connection, but unfortunately, 23% of school districts
still lack fast and stable Internet connectivity (Education Superhighway, 2015). Schools will want to
weigh their options based upon their own current technological resources.

Stakeholders
Although physical infrastructure is important, equally important is cultivation of community stakeholders
who can support computer science implementation. Computer science is a relatively new discipline in
K–12 education, so policymakers and administrators at
educational institutions may be unclear about appropri-
ate content for either standalone computer science
classes or integrated experiences within other content
areas. They may also have misconceptions about the
target audience for computer science education. For
example, some stakeholders may believe that computer
science should be available only as enrichment oppor-
tunities for typically high-achieving students, rather than
for the entire student population. However, just like
other subject areas, all students are capable of learning
the basics of computer science, and it is widely agreed
in the computer science education community that the
fundamentals of computer science are essential for
developing critical thinking skills and understanding the
technology that people interact with daily.

Community and Business Partners
The school community should be educated both to inform and to build support for computer science
implementation. School events such as back-to-school nights, parent-teacher conferences, school
board meetings, or academic showcases like science fairs can be useful for communicating the
specific nature of computer science education in a particular school or district and for engaging local
elected officials. Highlighting and featuring student work is an excellent opportunity to spark discus-
sion and address misconceptions about what computer science is, who it is for, and when students
should be learning it. Many computer science education organizations have resources and ideas for
outreach and community events.2

2 For example, the National Center for Women & Information Technology (NCWIT) has Outreach-in-a-Box kits, and Code.org has Hour of Code event
ideas.

“There is deep and widespread
confusion within the states as
to what should constitute and
how to differentiate technology
education, literacy and fluency;
information technology
education; and computer
science as an academic subject.”
(Wilson, Sudol, Stephenson, &
Stehlik, 2010, p. 9)

K–12 Computer Science Framework 167

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

A school leader interviewed on LeadCS.org (2015) explains the importance of involving the business
partners when implementing new computer science programs:

The whole idea is the neighborhood—to get the entire buy-in of the neighborhood where
the school is in. At some point you are going to need help in funding, whether that’s
through grants or local businesses here or there. [Get] that buy-in ahead of time so that if
you do have to go ask for funding, they’ll be at the table and know ahead of time that the
request doesn’t just come out from nowhere. (p. 2)

Other than funding, community and business partners can provide guest speakers, teaching assis-
tants, field trip and camp opportunities, and even internships.

Informal Education
Informal education organizations are essential to the computer science education ecosystem and
should be included as critical stakeholders in state and district implementation efforts. Organizations
participating in informal education networks, such as the
Statewide Afterschool Networks, can play a large role in
supporting partnerships with industry and higher education
institutions, including organizing large-scale
professional development opportunities.

Informal education offers young people opportunities to
increase their interest in computer science, develop relation-
ships with role models, and build capacity for engaging in a
variety of computer science activities. Informal education is
used here to refer to organizations that provide extracurricular, out-of-school, afterschool, camp, or
other learning environments beyond the scope of the school day, including the developers of games
and apps on the Internet and mobile devices. Informal education can provide increased opportunities
for project-based learning, as demonstrated by the maker movement in afterschool programs. Infor-
mal education provides a natural setting for socially relevant and culturally situated activities, such as
community impact projects. Informal education also allows students to amplify the foundation taught
in school and explore a vast array of novel, specialized topics beyond the scope of formal education.
These activities can be guided by the concepts and practices of the framework to provide a link to
in-school learning.

Informal education programs also have the potential to significantly increase the number of students
and the diversity of students who are exposed to computer science. By one estimate, 7 million stu-
dents have access to afterschool STEM learning opportunities, based on a survey of parents (After-
school Alliance, 2015, p. 7). Further, parents from African American, Hispanic, Asian, and Caucasian
populations report that children participate in afterschool STEM activities at similar rates (approxi-
mately 80%), and parents of males and females report similar levels of access (Afterschool Alliance,
2015). Some organizations focus primarily on serving female (e.g., Girls Who Code, 2016; National

Informal education is
essential to the computer
science education
ecosystem.

168 K–12 Computer Science Framework

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

Center for Women & Information Technology, 2016; National Girls Collaborative Project, 2016) and
minority (e.g., Black Girls Code, 2016; Level Playing Field Institute, 2016) students and a large per-
centage of participants attending these programs express interest or plans to study computer science
at the postsecondary level (Girls Who Code, 2016). The framework has potential for increasing coher-
ence between formal and informal computer science education, uniting both under a common vision.

Teacher Development
Teacher development is a critical part of the computer science education infrastructure. Teacher devel-
opment is used here as a broad term that includes preservice teacher preparation, certification,
licensure, and ongoing professional development. It concerns stakeholders in higher education, state
agencies, school districts, and organizations that provide professional development.

The K–12 Computer Science Framework can inform the design of teacher development programs.
The concepts and practices help program designers and novice teachers organize and understand the
breadth of knowledge in computer science. The framework was intentionally written with the under-
standing that it would be used by both teachers who are familiar with computer science and teachers
who are new to computer science. This section details the role that the framework plays in teacher
development and describes policies that support and promote the development of computer science
teachers.

Preservice Teacher Preparation
There is a nationwide lack of preservice teacher preparation programs in computer science.
Most states do not have a single university teacher preparation program in computer science. For
example, in 2014–15, only 51 computer science teachers, across all 50 states, graduated from teacher

K–12 Computer Science Framework 169

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

preparation programs with explicit certification in computer science (Title II, 2016). UTeach, a STEM
teacher preparation program that operates out of 44 universities, has noted that of all of its subjects,
increasing the pool of computer science teachers has proven to be the most difficult (Heitin, 2016).
Colleges and universities looking to build capacity to offer special courses for computer science
education and create new programs face a difficult task, with challenges such as funding, time,
staffing, enrollment, and expertise. The current landscape of computer science teacher preparation
has reflected a paradoxical challenge: secondary schools cannot offer computer science classes
because they cannot find prepared teachers, and preservice programs do not prepare teachers
because there are not enough computer science classes for potential graduates to teach.

Using the framework to guide teacher preparation content
The framework can be used in a number of ways to guide teacher preparation programs as they
help preservice teachers develop the content and pedagogical knowledge necessary to meet the
needs of a diverse student population. This section describes how the framework informs teacher
preparation programs, including the organization of courses, pedagogical content knowledge, and
pedagogical practice.

The concepts and practices provide an organizing structure for framing preservice teachers’ content
knowledge, but the depth of coursework should not be limited by the student expectations in the
framework. The five core concepts can be used to determine which courses are required, potentially
necessitating coursework outside of the traditional computer science pathway (which often focuses on
programming). For example, computer science courses may need to integrate content from data
science or ethics courses. These hybrid courses provide an opportunity for collaboration among
different departments in higher education institutions to fulfill requirements in multiple majors. This
approach can decrease the need for specific computer science faculty and increase exposure to
computer science for students in other majors.

In addition to gaining subject matter knowledge and general pedagogical skills, preservice computer
science teachers need to develop pedagogical content knowledge specific to the teaching of com-
puter science (Tucker et al., 2006). At the intersection between subject matter knowledge and peda-
gogy, pedagogical content knowledge “includes an understanding of what makes the learning of
specific topics easy or difficult: the conceptions and preconceptions that students of different ages
and backgrounds bring with them to the learning of those most frequently taught topics and lessons”
(Shulman, 1986, p. 9). Teaching methods courses offer the environment in which pedagogy and
pedagogical content knowledge can be developed. Explicit modeling of computer science pedagogy
and opportunities for exercising pedagogical content knowledge will provide teachers strategies for
working with all students, such as those who may struggle with programming. The framework’s
learning progressions can be used to support teachers’ development of pedagogical content knowl-
edge because the progressions describe key conceptual milestones and show how students’ under-
standing can build over time. Focusing preservice course activities around the framework learning

170 K–12 Computer Science Framework

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

progressions provides a context in which preservice teachers can identify potential misconceptions
and ideas that students may find difficult to comprehend.

Preservice preparation programs can be inspired by the framework’s vision to develop students who
understand the world through the lens of computer science and can apply computer science to a
variety of interests and disciplines. To align to this vision, teacher preparation programs should en-
courage preservice teachers to connect computer science to a variety of personal, practical, and social
contexts. For example, course activities could include critical discussion of current events that demon-
strate the pervasiveness of computing and the ways these events connect to the relevant concepts
and practices in the framework. Preservice teachers could also gain experience in producing a wide
range of real-world computational artifacts that are personally relevant and meaningful—opportunities
they will eventually provide for students.

Realizing this vision of the computer science classroom also requires teachers who are able to inte-
grate the concepts and practices of the framework into meaningful learning experiences. Preservice
teachers should develop facility in combining practices—such as promoting the needs of diverse end
users, soliciting and incorporating feedback into the design process, and defending design deci-
sions—with concepts across the five core concepts in the framework. The integration of the concepts
and practices can also serve as focal points for projects, lessons, and activities and can provide con-
texts for examining different pedagogical approaches.

Structuring teacher preparation programs
Increasingly, teacher preparation programs at universities are creating innovative programs to expose
preservice teachers to aspects of computer science so they can integrate it into their instruction or
add computer science as another certification (e.g., DeLyser, 2016). This section describes how
teacher preparation programs can be structured to prepare teachers to teach multiple content areas
or to integrate computer science into other content areas. Partnerships between these programs,
school districts, and state departments of education are critical for increasing the number of computer
science teachers.

An option for preparing preservice teachers in computer science without creating full preparation
pathways is to add computer science to teacher preparation programs for other subjects. For exam-
ple, Illinois State University (2016) has a computer science education program that can be added onto
a mathematics education major, resulting in dual certification. UTeach programs at The University of
Texas at Austin (UTeach College of Natural Sciences, 2016) and its 43 partner universities are designed
for computer science and other STEM majors to obtain teaching licensure without adding more time
to their undergraduate degree plans. These types of programs prepare their graduates to teach two
subjects, which can make those graduates attractive to school districts who need teachers who can
teach one or two computer science courses. Depending on the program and with proper planning,
students can graduate with a computer science certification with few to no additional credits.

K–12 Computer Science Framework 171

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

Incorporating computer science content into a required course for all education majors, such as a
learning theory or an educational technology course, can expose all preservice teachers to computer
science. For example, the education department at Purdue University incorporated a one-week
module on computational thinking into a required course for elementary and secondary majors
(Yadav, Zhou, Mayfield, Hambrusch, & Korb, 2011). The computational thinking content replaced a
module on problem solving and critical thinking by addressing similar objectives within a computer
science context. By learning computational thinking concepts,
teachers can be better prepared to integrate it into their
teaching and better able to articulate broader uses of it as a
problem-solving tool in other disciplines (Yadav, Mayfield,
Zhou, Hambrusch, & Korb, 2014).

State and district departments responsible for teacher hiring
are influential in increasing the pool of qualified computer
science teachers. As suggested earlier, states and districts
should communicate their computer science implementation
plan to engage a variety of education stakeholders. This
collaboration is particularly relevant when hiring more com-
puter science teachers, as partnerships with higher education institutions can lead to joint strategies
targeting computer science, ongoing professional development opportunities, placements for
professional internships, and a candidate pool for new teaching positions in computer science
(Barth et al., 2016). Partnerships between states or districts and higher education can facilitate
communication about projected vacancies in computer science and the demand for graduates with
experience in computer science education. For example, districts that are integrating computer
science into pre-existing courses should make preservice programs aware that teacher candidates
who have had experience with integrating computer science will be favored in the hiring process
(see Figure 8.8 for a sample interview activity). These partnerships can also benefit districts via the
matching Teacher Quality Partnerships Grants provided through Title II of the Higher Education Act
(2008) that are awarded to colleges of education who work with high-need school districts to improve
teacher preparation.

Closely related to preservice teacher preparation, the next section discusses the computer science
teacher certification landscape and offers recommendations for developing certification pathways.

Incorporating computer
science into a required
course for all education
majors can expose all
preservice teachers to
computer science.

172 K–12 Computer Science Framework

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

Figure 8.8: Sample interview activity based on the framework

Certification
Practical, straightforward, and clearly communicated computer science certification pathways that are
also supported by teacher preparation programs are a key contributor to the sustainability of comput-
er science implementation. Unfortunately, based on an analysis of state data reported by Code.org
(2016a), only 27 states offer a computer science certification option. The Computer Science Teachers
Association has reported that of the states that offered computer science certification in 2013, 12 did
not require it to teach (CSTA Certification Committee, 2013). The lack of certification pathways means
that many teachers currently teaching computer science are certified in another subject. Similar to the
preservice program paradox, the certification paradox is that “[s]tates are hesitant to require certifica-
tion when they have no programs to train the teachers, and teacher training programs are hesitant to
create programs for which there is no clear certification pathway” (Stephenson, 2015, para. 2).

The 2013 report Bugs in the System summarizes a certification landscape in which prospective
computer science teachers are frustrated by unclear processes, preparation programs are few, and
administrators are confused about what computer science even is (CSTA Certification Committee,
2013). The report states:

This report on computer science teacher certification in the 50 states and the District of
Columbia makes it clear that the certification/licensure processes for computer science are
deeply flawed. In Florida, for example, would-be computer science teachers have to take a
K–8 computer science methods course that is not offered in any teacher preparation
program in the state. Prospective computer science teachers often meet difficulty in
determining what the certification/licensure requirements are in their own states because
no one seems to know. Add to that frustration the confusion that persists around what
computer science is and isn’t and where it fits in K–12 academics, and it’s astounding that
professionals with such valued expertise persevere to become computer science teachers.
But they do. (Executive Summary)

The framework can be used to initiate conversations during hiring or reassignment to
assess teacher readiness.

Choose one of the concept statements from the framework and ask candidate teachers how
they would integrate it with one of the seven practices in the classroom. Ask them to de-
scribe a project that they have facilitated in a classroom that would demonstrate mastery of
one of the concept statements.

K–12 Computer Science Framework 173

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

Recent reforms at the national level, coupled with demand
for computer science education from students, parents, and
business leaders, provide opportunities and motivation for
states to institute certification pathways. The STEM Education
Act of 2015 expanded the definition of STEM to include
computer science. This was followed by the Every Student
Succeeds Act (2015) including computer science as part of a
“well-rounded education” alongside subjects such as English
language arts, mathematics, and science. As a result, STEM
endorsement programs in the state of Maryland have used
the clarification as an opportunity to revamp their programs
to include computer science content. This type of modifica-
tion to the STEM endorsement could be considered by other
states that support and promote STEM education via certification or teacher development.

States implement computer science teacher certification in different ways. Some states have a full
computer science teacher certification, and other states have a computer science endorsement that
certified teachers can obtain in addition to their primary certification. For states seeking to develop or
expand their computer science teacher certification pathways, multiple options are available. Potential
ideas under development by Code.org (2016b) include suggestions for what can happen immediately,
in the short term, and in the long term. Although creating a full certification pathway provides long-
term sustainability, it also requires time, resources, and collaboration with teacher preparation institu-
tions. Immediate and short-term solutions include

• using existing alternative CTE certification pathways,
• allowing teachers to teach computer science under a temporary license while obtaining profes-

sional education in computer science or while pursuing full certification,
• requiring computer science in existing pathways for technology education,
• creating add-on endorsements for teachers who are already certified in other content areas, and
• developing or adopting a computer science teacher licensure exam for endorsement.

These types of solutions can be instituted in parallel with the development of a full certification
pathway (Code.org, 2016b). In each case, the framework’s concepts and practices should be used to
inform the selection or development of the coursework or examination necessary for certification, and
the resources and requirements for certification should be publicly posted and readily accessible.

Inservice Professional Development
Professional learning in computer science builds off experiences in preservice programs to provide a
coherent teacher development experience based on a foundation of the framework’s concepts and
practices. Professional development is currently being used as a way of preparing existing teachers to

The Every Student
Succeeds Act (2015)
includes computer
science as part of a
“well-rounded
education” alongside
English language arts,
mathematics, and science.

174 K–12 Computer Science Framework

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

meet the demand for computer science courses. School
districts should consider collaborating closely with universi-
ties, informal education programs, and organizations to
offer large-scale professional development and ensure a
consistent teacher development experience.

Efforts to build teacher capacity in computer science face a
special challenge because the teachers attending profes-
sional development opportunities represent a wide range
of experience. In 2013, a landscape study of computer
science professional development, Building an Operating
System for Computer Science, found that more than half of all teachers attending professional devel-
opment in computer science education are novices to computer science, rather than current computer
science teachers (Century et al., 2013). In addition, three-fourths of the computer science professional
development providers surveyed reported that they work with teacher participants who are new to
computer science. These findings are expected, as a lack of current computer science teachers has
driven school systems to meet the immediate need for computer science courses by building capacity
amongst existing teachers certified in other areas, such as math, science, and general education
technology (Century et al., 2013).

The wide variety of computer science experiences in teachers’ backgrounds necessitates professional
development experiences that are differentiated to meet the needs of multiple populations: teachers
who are already experienced and certified in computer science but are in need of continuing educa-
tion, teachers from other disciplines who are new to teaching computer science, and teachers who are
preparing to integrate computer science content into other content areas. Differentiation for teachers’
comfort levels with computer science can affect whether that teacher continues teaching computer
science. In one study of workshops designed for teachers with prior computer science experience, the
teachers who did not have computer science backgrounds experienced frustration and ultimately quit
teaching computer science (Ericson, Guzdial, & Biggers, 2007). Furthermore, the needs of secondary
school educators who teach independent computer science courses may differ from the needs of
elementary school teachers who want to incorporate computer science into their teaching.

Although there are effective practices that apply to all professional development experiences, the
following recommendations address issues particular to computer science.

Customize professional development to meet teachers’ varied backgrounds in computer science.
Teachers’ experience with computer science varies, as does their primary area of certification. When
possible, the audience for a workshop should be homogenous based on computer science experi-
ence and area of primary certification. When this is not possible, a workshop could include sessions
for teachers to break into groups based on experience or certification.

A lack of current computer
science teachers has driven
school systems to meet
the immediate need by
building capacity amongst
existing teachers.

K–12 Computer Science Framework 175

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

Professional development should attend to novice teachers’ anxiety over their lack of content
knowledge.
Given the introduction of computer science into many education systems, it is natural that many
teachers attending professional development may not already have a background in computer
science. While not diminishing the importance of pedagogical content knowledge or general peda-
gogical practice for teaching computer science, professional development providers should attend to
teachers’ anxiety about content knowledge by helping them see that many teachers are in the same
situation. Professional development can instill a growth mindset in participants, in which learning
builds over time, during a workshop as well as the school year while teachers deliver instruction.
Professional development should be viewed as a safe space to try new or difficult things.

Providers should connect professional development experiences to a curricular context.
Disciplinary and pedagogical content should be learned within the context of a teacher’s instructional
goals, curricular frameworks, and/or courses. Professional development that focuses mainly on a
programming language or how to use a tool, without providing time for participants to make plans for
using those tools or languages in their courses, is less practical and actionable as it does not prepare
teachers to deliver a meaningful curriculum. Alternatively, professional development connected to the
concepts and practices in the framework can provide opportunities to practice teaching content (i.e.,
microteaching) and can be contextualized to particular curricula that teachers will be using in their
classrooms.

Professional development should include a focus on increasing access and equity.
Computer science courses often lack diversity and can be intimidating for many students. Teachers
should have experience engaging in and reflecting on the same practices in the framework that are
expected of students, particularly in terms of access and equity, such as incorporating diverse perspec-
tives into a design, meeting the needs of diverse end users, and creating equitable workloads for teams.
Computer science brings unique issues that require the emphasis of particular pedagogical practices,
such as equitable practices that address the varied exposure students have in computer science and
stereotypes that exist about the field (Ryoo, Goode, & Margolis, 2016). Professional development
opportunities focused on equitable teaching strategies have shown success in recruiting and retaining
females and underrepresented minorities (Cohoon, Cohoon, & Soffa, 2011). The issue of equity in
computer science is addressed more fully in the Equity in
Computer Science Education chapter.

Professional development should address the manage-
ment of a productive computer lab environment.
The computer plays a much larger role in the computer science
classroom than others. Students will often move between
computer work and classroom instruction, sometimes within the
same period, and at other times work on the computer for days.

Professional develop-
ment should include a
focus on increasing
access and equity.

176 K–12 Computer Science Framework

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

Sometimes an online environment can deliver instruction through videos and tutorials. Teachers must learn
how to manage a classroom in which the computer serves as both the primary medium for demonstrating
performance as well as an occasional teaching aid.

A number of these recommendations are inspired by the suggestions in Building an Operating System
for Computer Science (Century et al., 2013), which offers additional
guidance related to computer science teachers’ needs,
including a portrait of the computer science teaching population and the contexts in which they teach.
The study is accessible at http://outlier.uchicago.edu/computerscience/OS4CS/.

Summary
The implementation of a K–12 computer science pathway is a long-term process, and the development
of a robust framework of concepts and practices represents only a single step. Implementing computer
science education requires engaging curriculum, evolving course pathways, technical infrastructure, and
the involvement of the community and informal education organizations. Teachers from a variety of
backgrounds must be prepared to teach the courses, and the overall pipeline of computer science
teachers has to be built and filled for any reform to be sustainable.

The writers, advisors, and organizations who have developed this framework recognize that efforts to
implement K–12 computer science exist in an education environment with multiple priorities including
student engagement, high school graduation rates, high-stakes testing, teacher accountability, and
budget shortfalls. Similar to a principle that helped guide the debates and discussions during the
development of the framework, policymakers and educators must constantly make decisions based
on what is best for students.

http://outlier.uchicago.edu/computerscience/OS4CS/

K–12 Computer Science Framework 177

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

References
Afterschool Alliance. (2015). America after 3 PM: Full STEM ahead. Washington, DC. Retrieved from

http://afterschoolalliance.org/AA3PM/STEM.pdf

Algorithmic Geometry. (2016). Retrieved from http://www.algogeom.org/

Barth, P., Dillon, N., Hull, J., & Higgins, B. H. (2016). Fixing the holes in the teacher pipeline: An overview of teacher shortages.
Center for Public Education. Retrieved from http://www.centerforpubliceducation.org/Main-Menu/Staffingstudents/
An-Overview-of-Teacher-Shortages-At-a-Glance/Overview-of-Teacher-Shortages-Full-Report-PDF.pdf

Black Girls Code. (2016). Retrieved from http://www.blackgirlscode.com

Black, P., Harrison, C., Lee, C., Marshall, B., & Wiliam, D. (2003). Assessment for learning: Putting it into practice. Maidenhead,
Berkshire, UK: Open University Press.

Bootstrap. (2016). From intro CS & Algebra to high-level courses in computer science, for all students. Retrieved from
http://www.bootstrapworld.org

Broward County Public Schools. (2016). Broward codes. Retrieved from http://browardschools.com/browardcodes

Century, J. (2009, September 25). The vanishing innovation: Why “sustaining change” must be as important as “scaling up.”
Education Week. Retrieved from http://www.edweek.org/ew/articles/2009/09/30/05century.h29.html

Century, J., Lach, M., King, H., Rand, S., Heppner, C., Franke, B., & Westrick, J. (2013). Building an operating system for
computer science. Chicago, IL: CEMSE, University of Chicago with UEI, University of Chicago. Retrieved from
http://outlier.uchicago.edu/computerscience/OS4CS/

Change the Equation (2016, August 9). New data: Bridging the computer science access gap [Blog post]. Retrieved from
http://changetheequation.org/blog/new-data-bridging-computer-science-access-gap-0

Chicago Public Schools. (2016, February 24). New CPS computer science graduation requirement to prepare students for jobs
of the future [Press release]. Retrieved from http://cps.edu/News/Press_releases/Pages/PR2_02_24_2016.aspx

Cliburn, D. C., & Miller, S. (2008). Games, stories, or something more traditional: The types of assignments college students prefer.
In Proceedings of the 39th SIGCSE Technical Symposium on Computer Science Education (pp. 138–142), Portland, OR.

Code.org. (2015). Making computer science fundamental to K–12 education: Eight policy ideas. Retrieved from
https://code.org/files/Making_CS_Fundamental.pdf

Code.org. (2016a). Promote computer science. Retrieved from https://code.org/promote

Code.org. (2016b). Teacher certification recommendations. Unpublished paper.

Cohoon, J., Cohoon, J. M., & Soffa, M. (2011). Focusing high school teachers on attracting diverse students to computer
science and engineering. In Proceedings of the 41st ASEE/IEEE Frontiers in Education Conference (pp. F2H-1–F2H-5). doi:
10.1109/FIE.2011.6143054

Computer Science Teachers Association Certification Committee. (2013). Bugs in the system: Computer science teacher
certification in the U.S. Retrieved from the Computer Science Teachers Association and the Association for Computing
Machinery website: https://csta.acm.org/ComputerScienceTeacherCertification/sub/CSTA_BugsInTheSystem.pdf

CTE Maryland. (2016). Maryland public schools CTE enrollment. Retrieved from https://www.mdctedata.org/dashboards/
summary.php?c=IT&y=2016&l=25

DeLyser, L. A. (2016). Building a computer science teacher pipeline for New York City. Retrieved from the NYC Foundation for
Computer Science Education website: http://pipeline.csnyc.org/#

Education Superhighway. (2015). 2015 state of the states: A report on the state of broadband connectivity in America’s public
schools. Retrieved from http://stateofthestates.educationsuperhighway.org/assets/sos/full_report-
55ba0a64dcae0611b15ba9960429d323e2eadbac5a67a0b369bedbb8cf15ddbb.pdf

http://afterschoolalliance.org/AA3PM/STEM.pdf
http://www.algogeom.org/
http://www.algogeom.org/
http://www.centerforpubliceducation.org/Main-Menu/Staffingstudents/An-Overview-of-Teacher-Shortages-At-a-Glance/Overview-of-Teacher-Shortages-Full-Report-PDF.pdf
http://www.centerforpubliceducation.org/Main-Menu/Staffingstudents/An-Overview-of-Teacher-Shortages-At-a-Glance/Overview-of-Teacher-Shortages-Full-Report-PDF.pdf
http://www.blackgirlscode.com
http://www.blackgirlscode.com
http://www.bootstrapworld.org/
http://www.bootstrapworld.org/
http://browardschools.com/browardcodes
http://www.edweek.org/ew/articles/2009/09/30/05century.h29.html
http://outlier.uchicago.edu/computerscience/OS4CS/
http://changetheequation.org/blog/new-data-bridging-computer-science-access-gap-0
http://cps.edu/News/Press_releases/Pages/PR2_02_24_2016.aspx
http://cps.edu/News/Press_releases/Pages/PR2_02_24_2016.aspx
https://code.org/files/Making_CS_Fundamental.pdf
https://code.org/promote
http://10.1109/FIE
https://csta.acm.org/ComputerScienceTeacherCertification/sub/CSTA_BugsInTheSystem.pdf
https://www.mdctedata.org/dashboards/summary.php?c=IT&y=2016&l=25
https://www.mdctedata.org/dashboards/summary.php?c=IT&y=2016&l=25
http://pipeline.csnyc.org
http://stateofthestates.educationsuperhighway.org/assets/sos/full_report-55ba0a64dcae0611b15ba9960429d323e2eadbac5a67a0b369bedbb8cf15ddbb.pdf
http://stateofthestates.educationsuperhighway.org/assets/sos/full_report-55ba0a64dcae0611b15ba9960429d323e2eadbac5a67a0b369bedbb8cf15ddbb.pdf

178 K–12 Computer Science Framework

Eglash, R. (2003). Culturally situated design tools. Retrieved from http://csdt.rpi.edu/

Eglash, R., Bennett, A., O’Donnell, C., Jennings, S., & Cintorino, M. (2006). Culturally situated design tools: Ethnocomputing
from field site to classroom. American Anthropologist (108)2, 347–362.

Ericson, B., Guzdial, M., & Biggers, M. (2007). Improving secondary CS education: Progress and problems. In Proceedings of
the 38th SIGCSE Technical Symposium on Computer Science Education (pp. 298–301).

Every Student Succeeds Act of 2015, Pub. L. No. 114-95. 20 U.S.C.A. 6301 (2016).

Girls Who Code. (2016). About us. Retrieved from https://girlswhocode.com/about-us/

Goldweber, M., Barr, J., Clear, T., Davoli, R., Mann, S., Patitsas, E., & Portnoff, S. (2013). A framework for enhancing the social
good in computing education: A values approach. ACM Inroads, 4(1), 58–79.Go

Governors for Computer Science. (2016). Retrieved from http://www.governorsforcs.org/about

Heitin, L. (2016, August). Physics not offered at 2 in 5 high schools, analysis finds. Education Week, 36(1), 6.

Higher Education Act of 2008, title II U.S.C. § 205 et seq.

Illinois State University. (2016). Teacher education in computer science (TECS). Retrieved from http://tecs.illinoisstate.edu/
resources/undergraduates

Indiana Department of Education. (2016). Science & computer science. Retrieved from http://www.doe.in.gov/standards/
science-computer-science

LeadCS.org. (2015). Advice from school leaders: Preparing for computer science in your school. Chicago, IL: CEMSE, Outlier
Research & Evaluation, University of Chicago. Retrieved from http://www.leadCS.org

Level Playing Field Institute. (2016). Retrieved from http://www.lpfi.org

Lopez, J. K. (n.d.). Funds of knowledge. In Bridging Spanish language barriers in Southern schools. Retrieved from
http://www.learnnc.org/lp/editions/brdglangbarriers/939

Margolis, J., Ryoo, J., Sandoval, C., Lee, C., Goode, J., & Chapman, G. (2012). Beyond access: Broadening participation in
high school computer science. ACM Inroads, 3(4), 72–78.

Margolis, J., Goode, J., & Chapman, G. (2015). An equity lens for scaling: A critical juncture for Exploring Computer Science.
ACM Inroads, 6(3), 58–66.

Maryland State Department of Education. (2005). Maryland technology education state curriculum. Retrieved from http://
mdk12.msde.maryland.gov/instruction/curriculum/technology_education/vsc_technologyeducation_standards.pdf

Massachusetts Department of Elementary and Secondary Education. (2016, June). 2016 Massachusetts digital
literacy and computer science (DLCS) curriculum framework. Malden, MA: Author. Retrieved from
http://www.doe.mass.edu/frameworks/dlcs.pdf

Moll, L., Amanti, C., Neff, D., & Gonzalez, N. (1992). Funds of knowledge for teaching: Using a qualitative approach to
connect homes and classrooms. Theory into Practice 31(2), 132–141.

National Center for Women & Information Technology. (2016). Retrieved from https://www.ncwit.org

National Girls Collaborative Project. (2016). Retrieved from https://ngcproject.org

Nord, C., Roey, S., Perkins, R., Lyons, M., Lemanski, N., Brown, J., and Schuknecht, J. (2011). The nation’s report card:
America’s high school graduates (NCES 2011-462). U.S. Department of Education, National Center for Education Statistics.
Washington, DC: U.S. Government Printing Office.

Papert, S. (1980). Mindstorms: Children, computers and powerful ideas. New York, NY: Basic Books.

Project GUTS: Growing Up Thinking Scientifically. (2016). Retrieved from http://www.projectguts.org

Rader, C., Hakkarinen, D., Moskal, B. M., & Hellman, K. (2011) Exploring the appeal of socially relevant computing: Are
students interested in socially relevant problems? In Proceedings of the 42nd ACM Technical Symposium on Computer
Science Education (pp. 423–428). doi: 10.1145/1953163.1953288

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

http://csdt.rpi.edu/
https://girlswhocode.com/about-us/
http://www.governorsforcs.org/about
http://tecs.illinoisstate.edu/resources/undergraduates
http://tecs.illinoisstate.edu/resources/undergraduates
http://www.doe.in.gov/standards/science-computer-science
http://www.doe.in.gov/standards/science-computer-science
http://www.doe.in.gov/standards/science-computer-science
http://LeadCS.org
http://www.leadCS.org
http://www.lpfi.org
http://www.learnnc.org/lp/editions/brdglangbarriers/939
http://mdk12.msde.maryland.gov/instruction/curriculum/technology_education/vsc_technologyeducation_standards.pdf
http://mdk12.msde.maryland.gov/instruction/curriculum/technology_education/vsc_technologyeducation_standards.pdf
http://www.doe.mass.edu/frameworks/dlcs.pdf
http://www.doe.mass.edu/frameworks/dlcs.pdf
https://www.ncwit.org
https://ngcproject.org
https://ngcproject.org
http://www.projectguts.org

K–12 Computer Science Framework 179

Ryoo, J., Goode, J., & Margolis, J. (2016): It takes a village: Supporting inquiry- and equity-oriented computer science
pedagogy through a professional learning community. Computer Science Education. doi:
10.1080/08993408.2015.1130952

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14. doi:
10.3102/0013189X015002004

Snodgrass, M. R., Israel, M., & Reese, G. (2016). Instructional supports for students with disabilities in K–5 computing: Findings
from a cross-case analysis. Computers & Education, 100, 1–17.

STEM Education Act of 2015, Pub. L. No. 114-59. 129 Stat. 540 (2015).

Stephenson, C. (2015, July 16). The thorny issue of CS teacher certification [Blog post]. Retrieved from
https://research.googleblog.com/2015/07/the-thorny-issue-of-cs-teacher.html

Title II. (2016). 2015 Title II Reports: National teacher preparation data [Data file]. Retrieved from https://title2.ed.gov/Public/
Home.aspx

Tucker, A., McCowan, D., Deek, F., Stephenson, C., Jones, J., & Verno, A. (2006). A model curriculum for K–12 computer
science: Report of the ACM K–12 task force curriculum committee (2nd ed.). New York, NY: Association for Computing
Machinery.

UC Davis C-STEM Center. (2016). Transforming math education through computing. Retrieved from http://c-stem.ucdavis.
edu/

UTeach College of Natural Sciences. (2016). Computer science. Retrieved from https://austin.uteach.utexas.edu/
certifications-and-degrees/certifications/high-school-certifications/computer-science

White House. (2016, September 13). FACT SHEET: New progress and momentum in support of President Obama’s Computer
Science for All initiative. Retrieved from https://www.whitehouse.gov/sites/default/files/microsites/ostp/csforall-fact-sheet-
9-13-16-long.pdf

Wiggins, G., & McTighe, J. (2005). Understanding by design (Expanded 2nd ed.). Alexandria, VA: Association for Supervision
and Curriculum Development.

Wilson, C., & Yongpradit, P. (2015, June 9). Maryland moves to increase diversity in computer science [Blog post]. Retrieved
from http://blog.code.org/post/121123281798/md

Wilson, C., Sudol, L. A., Stephenson, C., & Stehlik, M. (2010). Running on empty: The failure to teach K–12 computer
science in the digital age. Retrieved from the Association for Computing Machinery and the Computer Science Teachers
Association website: http://runningonempty.acm.org/

WGBH Educational Foundation & the Association for Computing Machinery. (2009). New image for computing: Report on
market research (April 2009). Retrieved from http://www.acm.org/membership/NIC.pdf

Yadav, A., Burkhart, D., Moix, D., Snow, E., Bandaru, P., & Clayborn, L. (2015). Sowing the seeds: A landscape study on
assessment in secondary computer science education. Retrieved from the Computer Science Teachers Association
website: https://csta.acm.org/Research/sub/Projects/ResearchFiles/AssessmentStudy2015.pdf

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational thinking in elementary and secondary
teacher education. ACM Transactions on Computing Education (TOCE), 14(1), Article 5, 1–16.

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., and Korb, J. (2011) Introducing computational thinking in education courses.
In Proceedings of the 42nd ACM Technical Symposium on Computer Science Education (pp. 465–470), Dallas, TX.

Implementation Guidance: Curriculum, Course Pathways, and Teacher Development

https://research.googleblog.com/2015/07/the-thorny-issue-of-cs-teacher.html
https://title2.ed.gov/Public/Home.aspx
https://title2.ed.gov/Public/Home.aspx
http://c-stem.ucdavis.edu/
http://c-stem.ucdavis.edu/
http://c-stem.ucdavis.edu/
https://austin.uteach.utexas.edu/certifications-and-degrees/certifications/high-school-certifications/computer-science
https://austin.uteach.utexas.edu/certifications-and-degrees/certifications/high-school-certifications/computer-science
https://title2.ed.gov/Public/Home.aspx
https://title2.ed.gov/Public/Home.aspx
https://title2.ed.gov/Public/Home.aspx
https://www.whitehouse.gov/sites/default/files/microsites/ostp/csforall-fact-sheet-9-13-16-long.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/csforall-fact-sheet-9-13-16-long.pdf
http://blog.code.org/post/121123281798/md
http://runningonempty.acm.org
http://www.acm.org/membership/NIC.pdf
https://csta.acm.org/Research/sub/Projects/ResearchFiles/AssessmentStudy2015.pdf

Computer Science in Early
Childhood Education

K-12 Computer Science Framework 183

9
Computer Science in Early Childhood Education
Amidst concerns over an unprepared 21st century workforce, U.S. policymakers have placed increased
emphasis on the subjects of science, technology, engineering, and math (STEM) to ensure that youth
are sufficiently equipped to compete in the increasingly global economy (e.g., National Science
Board, 2012; U.S. President’s Council of Advisors on Science and Technology, 2010; U.S. Congress
Joint Economic Committee, 2012). Computer science in particular has recently taken the national
spotlight, with large-scale initiatives at the local, state, and federal levels aiming to ensure that
students gain computational literacy skills viewed as “a ‘new basic’ skill necessary for economic
opportunity and social mobility” (Smith, 2016, para. 1).

Many of these computer science initiatives focus on the K–12 and postsecondary education
environments. For example, Maryland has established prekindergarten (pre-K) computer science
standards (Maryland State Department of Education, 2015), while several school districts, including
San Francisco Unified School District (Twarek, 2015) and Boston Public Schools (2016), have taken it
upon themselves to initiate computer science education at the pre-K level.

In the same spirit of providing computer science learning opportunities for all K–12 students as a
means to ensure a prepared and productive workforce for the 21st century, investing in early childhood
education has been shown to be one of the best means for closing early achievement and development
gaps, which subsequently aids the economic and social well-being of the broader community (Heckman,
2006; Heckman & Masterov, 2007; Magnuson, Meyers, Ruhm, & Waldfogel, 2004).

From landmark studies on the High/Scope Perry Preschool Program (Schweinhart et al., 2011) and the
Carolina Abecedarian Project (Campbell, Ramey, Pungello, Sparling, & Miller-Johnson, 2002) to a recent

184 K–12 Computer Science Framework

Computer Science in Early Childhood Education

review of 84 early childhood education interventions (Camilli, Vargas, Ryan, & Barnett, 2010), research
consistently shows that high-quality early learning experiences have positive short- and long-term
effects on children’s learning and development. While specific “quality learning experiences” may
look different from classroom to classroom, several common elements include instructionally and
emotionally supportive interactions between teachers and students; developmentally appropriate
curricular resources and materials; structured learning activities individualized to match students’
different needs; and opportunities for exploration and play (e.g., Pianta, Barnett, Burchinal, &
Thornberg, 2011; Yoshikawa et al., 2013).

Given the large impacts that early childhood education can have on young children’s learning and
development, and the subsequent impacts this foundational learning has on the broader economic
and social welfare, what, then, is the place of computer science in early childhood education? In
response to this lack of clarity regarding what computer science looks like in the early childhood
classroom, this chapter outlines practical applications of the K–12 Computer Science Framework’s
concepts and practices appropriate for the pre-K setting.

Powerful Ideas in Pre-K Computer Science
Researchers, educators, and policymakers alike have suggested a myriad of ideas as to the principles
of computer science education. The proposed K–12 Computer Science Framework is itself an
amalgamation of such principles and draws on Papert’s (1980) “powerful ideas” to articulate specific
computer science concepts and practices for the K–12 learning environment. However, instead of simply
applying these core concepts and practices to the pre-K environment—and thus assuming that they are
developmentally appropriate and necessary for all young children to learn—this chapter outlines a set of
“powerful ideas” specific to early childhood education. These pre-K computer science concepts and
practices build foundational knowledge and understanding for later engagement in computer science
at the elementary school level. They are grounded in the research literature on computer science
education in early childhood education settings and based on Papert’s (1980) constructionist framework,
which emphasizes children’s active engagement in knowledge building through the construction of
physical objects, where computing technologies are tools with which children can build and design to
develop such knowledge. Teachers scaffold these active learning experiences by providing structured
support that helps guide students to deeper engagement and higher-level thinking. Constructionism
provides the foundation for much of the computer science education research and practice and aligns
with traditional conceptions of early childhood education as a hands-on, interactive, and play-based
learning environment (Bers, Ponte, Juelich, Viera, & Schenker, 2002).

As outlined in Figure 9.1, four powerful ideas are embedded within the core content areas of math,
literacy, and science, and the fifth—social and emotional learning—is understood as a holistic frame
for all early childhood educational practices. Further, these powerful ideas are encompassed by the
pedagogical bedrock of early learning environments: play.

K–12 Computer Science Framework 185

Computer Science in Early Childhood Education

Figure 9.1: Integrating powerful ideas in computer science and early childhood education

In the following sections, these five powerful ideas are described in current, everyday pre-K contexts
and then extended to a computer science context. In this way, computer science becomes a natural
extension of children’s everyday engagement with their environment and builds on what educators
already do in their daily practice. Further, each powerful idea is connected to one or more of the frame-
work’s practices to provide insight on the progression from pre-K to elementary computer science.

1. Social and Emotional Learning: Strong Affective, Behavioral, and Cognitive
 Competencies Provide the Foundation for Successful Learning and Development.
As defined by the Collaborative for Academic, Social, and Emotional Learning (CASEL, 2012), social
and emotional learning (SEL) “involves the processes through which children and adults acquire and
effectively apply the knowledge, attitudes, and skills necessary to understand and manage emotions,
set and achieve positive goals, feel and show empathy for others, establish and maintain positive
relationships, and make responsible decisions (p. 4).” The five core competencies of SEL are self-
awareness, self-management, social awareness, relationship skills, and responsible decision-making.

SC
IE

NCE

M AT H

LITERA
C

Y

PLAY

Patterns
Problem Solving

Representation
Sequencing

Social and Emotional

186 K–12 Computer Science Framework

Computer Science in Early Childhood Education

Children develop social and emotional skills through playful interactions with peers and adults, and
research continually shows these interactions can have significant impacts on children’s learning and
development (e.g., Mashburn et al., 2008; Pianta et al., 2002). More than 500 studies demonstrate the
positive benefits of SEL for children’s interpersonal relationships, cognition, and academic learning in
all content areas (e.g., Klem & Connell, 2004; Weissberg & Cascarino, 2013; Weissberg, Durkak,
Doitrovich, & Gullota, 2015), and a strong SEL foundation developed in early childhood can have
lasting impacts on children’s future academic and professional success (e.g., Camilli et al., 2010;
Chetty et al., 2011). Importantly, when teachers emotionally engage with students, show they care,
listen to students’ needs and desires, and take time to be mindful of momentary tones of the
classroom climate, they can both model and elicit SEL among children.

Framework connections: P1.Fostering an Inclusive Computing Culture, P2.Collaborating Around
Computing, and P7.Communicating About Computing
Within the context of the framework, practices 1, 2, and 7 encompass being able to work and
communicate with teams with lots of differing perspectives. Teachers can foster an inclusive
computing environment by presenting opportunities for students to share, collaborate, and support
one another. They can also encourage children to be
self-aware of their own engagement. These skills can
be proactively addressed through conversations about
differences in behaviors, opinions, and perspectives;
advocating for self and friends; and struggles throughout
playful engagements that were solved (or could be solved)
through mediation and empathic problem solving.

In computer science, the best products are created by teams
consisting of members with varied backgrounds who listen to
and respect one another’s ideas. Additionally, computer
science is more than just creating products and involves
effectively communicating (verbally and visually) processes
and solutions to a broader audience. These principles can be developed in the pre-K classroom by
fostering children’s social and emotional development through play.

Everyday example
Learning to play with a new playmate is a regular occurrence in an early learning environment and
often involves a process of negotiation requiring teacher scaffolding. Educators can set up structures
to help facilitate this process in three phases. First, child A chooses what game to play for five
minutes. Then, child B chooses what game to play for five minutes. In the third iteration, the students
practice compromising to find a game they will both enjoy. Teachers can help facilitate this third phase
by encouraging child A to state an attribute of a game she wants to play without naming the actual
game (e.g., “building something” instead of “playing with blocks”). Then child B refines this

In computer science,
the best products are
created by teams
consisting of members
with varied backgrounds
who listen to and respect
one another’s ideas.

K–12 Computer Science Framework 187

Computer Science in Early Childhood Education

suggestion with something he wants. If the children have more verbal and reasoning skills, they could
each describe several attributes and then problem solve together to come up with a game that
satisfies all of the attributes. This allows each child to take a turn being the leader and a turn being a
respectful listener and follower, as well as gives them a blueprint for having a conversation that takes
into account multiple opinions.

Computer science example
Often, early childhood education environments are not outfitted with one-to-one computing devices,
such that children work in pairs or small groups by default. Educators can leverage this natural setup
by facilitating pair programming experiences for children. At the simplest level, this facilitation could
be helping students learn to share the device through the use of “My turn”/“Your turn” flashcards,
with children passing the cards back and forth to designate whose turn it is to use the computer.
Taking this a step further, educators can provide opportunities
for computer-supported collaborative learning (Dillenbourg,
1999; Goodyear, Jones, & Thompson, 2014) in which children
work together on the computer to solve a shared task or
problem, rather than just taking separate turns using the
device. Pair programming involves one person taking on the
role of a “driver” while the other is the “navigator.” The driver
is the person who controls the actions of the computer and
focuses on the details, while the navigator takes a bigger
picture view of the problem and helps by answering questions
and looking out for potential problems or mistakes. At the
pre-K level, teachers can help facilitate pair programming among two children with the same “My
turn”/“Your turn” flashcards to designate driver/navigator roles as well as encourage children to
engage in collaboration and communication skills to foster peer-to-peer scaffolding. Educators can
provide more support and scaffolding by engaging in child/teacher pair programming.

Pair programming
involves one person
taking on the role of a
“driver” while the other
is the “navigator.”

188 K–12 Computer Science Framework

Computer Science in Early Childhood Education

2. Patterns: Patterns Help Us Make Sense of the World by Organizing Objects and
 Information Using Common Features (e.g., Color, Shape, Size).
In computer science, patterns allow people to reduce complexity by generalizing and applying
solutions to multiple situations. Learning about patterns in the early years can build a foundation for
developing and using abstractions (e.g., defining and calling procedures), solving computational
problems more effectively (e.g., using loops instead of repeating commands), and making inferences
(e.g., using models and simulations to draw conclusions). An example is shown in Figure 9.2.

Figure 9.2: Identifying patterns

Framework connections: P4.Developing and Using Abstractions
One aspect of developing and using abstractions is the ability to categorize items/objects/code and
identify general attributes based on those categorizations (or “abstract” out more general patterns to
describe the categorizations). Abstraction is one step beyond recognizing patterns, where the focus is
on identifying and describing repeated features but not yet categorizing items/objects/code based on
those features or abstracting more general attributes to define those categorizations.

Everyday example
Children learn to recognize patterns through routines that provide experiences with noticing and
naming features of things in their worlds. For example, a child may notice and name the colors in a
classroom or notice and name different features of Legos®. Over time, they can start to identify
repeated features and, in turn, create images or move objects to show repeated features. For
example, a child may place colored objects in an order—green, red, green, red, green, etc.
Those patterns can become even more elaborate as additional colors or features are taken into
consideration—yellow, green, red, yellow, green, red. Additionally, rhythm is a great example of a
pattern because it presents a repeated sound and movement pattern. Children can show patterns in
movement through dance, repeating a physical movement.

AB
ABC
ABB
AAB

K–12 Computer Science Framework 189

Computer Science in Early Childhood Education

Extending this one step further into early abstraction skills, students can be given a specific category
(e.g., dog or cat) and identify what they know (i.e., attributes) based on that categorization. For
example, for the category “cat,” some attributes children will know are the approximate size
(significantly smaller than a horse), the color (not purple, green, or blue), the number of eyes (two) and
legs (four), and the existence of a tail. Children also know that a cat likes to pounce and that it meows,
but a cat cannot bark, nor can it fly.

Computer science example
In the digital world, computers use patterns to organize information. A teacher can show how
repeated patterns are everywhere in the world. For example, barcode patterns that are everywhere in
a grocery store are meant to give information about the item to the cash register. The barcode uses
repeated features (thin lines, thick lines, and space) to give directions to computing devices. The
“beep, beep, beep” of the scanner is also a pattern in the grocery store because it is a repeated
feature. Patterns can be grouped. So, for example, we could group the pattern of barcode-beep,
barcode-beep, barcode-beep.

Teachers can use a visual, block-based programming environment to present a pattern of commands
and guide students in identifying the pattern. Many block-based programming languages use differ-
ent colors for types of blocks. Teachers can demonstrate how a series of commands can be used to
draw a simple shape, such as a square or triangle, and ask students to identify patterns by using
different colors as visual cues. This activity can serve as a precursor to students independently creating
their own programs.

3. Problem Solving: Children Construct Knowledge Through Problem Solving.
Young children naturally engage in problem-solving processes in their daily lives as they explore and
interact with the world around them. Teachers can help make problem solving “visible” by asking
questions to uncover children’s reasoning and thought processes (e.g., How did you know that? What
made you think that?) as well as offering structured methods to scaffold children’s problem solving.
One such method often used in computer science is an iterative development process. This process
involves identifying a problem; devising and testing solutions; evaluating the results; and revising and
redoing to find the best solution. Central to this process is making mistakes and learning from them to
effectively solve new problems in different situations.

Framework connections: P3.Recognizing and Defining Computational Problems, P5.Creating
Computational Artifacts, and P6.Testing and Refining Computational Artifacts
In one sense, computer science is the study of problems, problem-solving processes, and the
solutions that result from such processes. Engaging in problem-solving activities early on can set the
foundation for recognizing and defining computational problems, engaging in testing and refinement
strategies, and developing and evaluating computational solutions to real-world problems.

190 K–12 Computer Science Framework

Computer Science in Early Childhood Education

Everyday example
Children regularly problem solve when they build with blocks. For example, while making a block
bridge for toy cars to cross, a child may move two base blocks near each other and add a block on
top. If the top block does not reach across the base blocks, then the child might move the base blocks
closer together and try to balance the top block again. A teacher can make this problem-solving
behavior visible for children by explaining how the child’s action demonstrates revising and redoing.
The teacher can talk about the student’s thought process that went into this kind of problem solving,
making comments such as, “Wow, I noticed that you figured out that the bridge wouldn’t work. How
did you know what to do next to solve your problem?”

Additionally, teachers can engage children in an iterative development process by setting up an
“Inventors Studio” in their classroom where children use problem-solving skills to create something
new with the help of teacher scaffolding and technology resources technology resources (see Figure
9.3). For example, if a child wants to make a sock puppet, she might first draw images of her sock
puppet on paper and write down all the materials she would need to make it. Then, with the help of a
teacher, she could look at images of sock puppets online and search for instructions on how to make
one. The child can then compare and revise her original drawing and materials list based on what she
and her teacher find online before trying to build the actual sock puppet. Throughout the construction
process, the teacher can also use technology to help document this problem-solving design process
by taking pictures along the way so that the child can look back and reflect on the different steps that
went into creating her sock puppet.

A teacher can also explicitly present problems and ask for children’s creative solutions. For example,
she may present a scenario: A mouse wants to hop onto a bed, but the nearby shoebox is too short to
help the mouse reach its destination. How might the mouse solve this problem? What else could a
mouse use to reach the top of the bed? In this example, the teacher can solicit many different ideas
and emphasize that there is no one right answer to solving this problem but that some solutions may
be more effective and efficient than others.

Computer science example
When developers create new technology, they often use an iterative design protocol that involves
creating an early version of the technology, testing it out, evaluating the results, making revisions, and
then testing it out again. In a classroom, sometimes technology does not work, and teachers can
engage children in a similar iterative problem-solving process to figure out why. They might check to
see whether the device is turned on, whether it is out of power, or whether it is physically broken.
These different checks are important to figuring out why the technology is not working and how to
get it to work again.

K–12 Computer Science Framework 191

Computer Science in Early Childhood Education

Figure 9.3: Student using technology resources during "Inventors Studio"

4. Representation: People Can Represent Concepts Using Symbols
Any language that has a print version is an example of how language can be represented. In the case
of English, the language is represented by words or word parts, which denote sounds and meanings.
Similarly, computational languages are represented by numbers, text, and symbols.

Framework connections: P4.Developing and Using Abstractions, P5.Creating Computational
Artifacts, and P7.Communicating About Computing
Understanding representation in the early years can build a foundation for understanding how
computers represent information and simulate the behavior of systems, both of which are important
for developing and using abstractions. Additionally, the creation of computational artifacts involves
developing simulations and visualizations that require an understanding of how computers represent
data, and effective communication about computing involves presenting information through visual
representations (e.g., storyboards, graphs).

Everyday example
Children draw pictures of their family that often look like “potato people”—circles for the head and
body and lines sticking out as arms and legs. Sometimes these “potato people” representations have
deeper meanings and stories behind them. Teachers can extend the idea of representation by asking
a child to share what her picture means and writing—in printed text—a sentence to describe the
child’s pictorial representation.

https://youtu.be/PgOaEFCox98

192 K–12 Computer Science Framework

Computer Science in Early Childhood Education

Alternatively, teachers can introduce the idea of representation by presenting a picture or symbol that
represents an idea. For example, a teacher may represent directions with icons such as an arrow for
moving forward, a spiral for turning around, or an octagon for stop. These iconic representations can
be used on cards for playing games such as “Red Light, Green Light,” in which children look at the
pictorial representations of the directions and act accordingly.

In a similar vein, teachers can explore representation with children by comparing different cultural
number systems. In America, children can count from one to five on a single hand, where each finger
represents a value of one. In Chinese, however, they can count from one to ten on one hand. Teachers
can teach children the Chinese system and then discuss the differences between the two. The American
system relies only on the number of fingers that are being held up, but the Chinese system also uses
which fingers are used, the way in which the finger is held (curled), and the angle (down versus up).
Figure 9.4 shows examples of representations of numbers.

Figure 9.4: Example of representing numbers using fingers

Computer science example
In the digital world, computers scientists use representations to “communicate” with computers.
A child may see a representation demonstrated as app icons on a smartphone, where each icon
represents a different app. Other “buttons” are visible in the computing world. For example, on/off
switches and digital dashboards in cars are all examples of representations of information in the
computing world. Teachers can engage children in exploring the different types of representations on
the computing devices in their classroom.

Additionally, computers use representations to function more efficiently. For example, computers
represent colors with numeric values. Using a simple word processing, drawing, or photo editing
application on a computing device, children can play with the RGB (red, green, blue) number values

K–12 Computer Science Framework 193

Computer Science in Early Childhood Education

of a color. Teachers can scaffold learning by pointing out how computers represent colors with
numbers and how by changing the number values the color that appears on the screen changes (see
Figure 9.5).

Figure 9.5: Numeric values that represent colors

5. Sequencing: Sequencing Is the Process of Arranging Events, Ideas, and Objects in
 a Specific Order
Children often learn about sequence through early literacy and math. For example, children learn that
stories follow a sequence (beginning, middle, end). Similarly, sequencing is explored through ordinal
numbers (first, second, third) as well as size and magnitude (smallest to largest). In computer science,
sequencing is an important foundation for algorithms, which are precise sets of instructions that
computers follow to accomplish a specific task. It is critical that people give instructions in the proper
sequence because computers do exactly what they are programmed to do; if the instructions are not
sequenced properly, the algorithm will not achieve the desired result.

Framework connections: P3.Recognizing and Defining Computational Problems, P4.Developing
and Using Abstractions, and P5.Creating Computational Artifacts
Learning about sequencing in the early years can build a foundation for learning one of the five core
concepts of the framework, Algorithms and Programming—key ideas in computational problem
solving, abstraction, and artifact creation. For example, understanding that instructions follow a
specific sequence sets the foundation for children being able to break down (or decompose) complex
problems into smaller steps that, if followed sequentially, will solve the problem.

194 K–12 Computer Science Framework

Computer Science in Early Childhood Education

Everyday example
Children love to tell stories; they talk about what happened over the weekend, about family events,
and about different happenings in the classroom. Each of these stories can be broken down into a
sequence of activities. Teachers can ask targeted questions to help children extend these ideas. For
example, a teacher might ask, “What happened last?” “What happened first?” and “What happened
in the middle?”

Another way to extend the idea of sequencing is for teachers to ask children to give instructions for
an everyday task, like getting dressed. Teachers can ask children to sequence the activities into what
they do first, second, and third as they dress themselves for the day. They can also have children draw
the outcome of specific sequences to show how the order of events in a sequence can make a big
difference (e.g., putting socks on after shoes, taking a shower after getting dressed). Alternatively,
teachers can have students engage in a story sequencing activity in which children have to put a series
of pictures in the correct order so that the story makes sense. Figure 9.6 shows a sequence for making
a cheeseburger.

Figure 9.6: Sequence of steps to make a cheeseburger

S T EP S T EP S T EP S T EP S T EP S T EP

K–12 Computer Science Framework 195

Computer Science in Early Childhood Education

Computer science example
A sequence of tasks can be explained in the context of using
a digital tool. For example, a teacher may explain that food
items are scanned at the grocery store and that is how the
price is indicated. The sequence is (1) a food item is scanned
and (2) the price is indicated by the cash register. This input/
output of digital information from scanning the item to
showing the price in the register can be acted out by children
through pretend play.

Students who are developmentally ready can use simple
block-based programming environments to create simple
algorithms and programs composed of sequences of commands. These environments allow students
to create programs without the obstacle of typing found in traditional text-based languages. They
often employ touch-based interfaces and reduced command sets to make programming accessible
to young learners. The visual blocks are representations of commands a computer follows to run
programs such as animations (Strawhacker & Bers, 2014). There are also robotics environments
created for pre-K students that use tangible wooden blocks to create sets of commands that can be
read by the robot to move, make sounds, and flash lights (Elkin, Sullivan, & Bers, 2014).

From Pre-K Powerful Ideas to the K–12 Framework
The importance of high-quality early childhood education cannot be overstated, and just as children
engage in early literacy, math, and science activities, so too can they engage in foundational computer
science learning. In spite of the recent push to make early
learning environments more academic (NRC, 2009), computer
science is a tool for developing more than technical skills and
content knowledge, and it can be embedded into develop-
mentally appropriate, play-based early learning practices
(Copple & Bredekamp, 2009; Bers et al., 2002). As Resnick
(2003) explained, computer science is well-suited for early
childhood education as it offers a learning environment where
young children can “play to learn while learning to play” (Bers,
Flannery, Kazakoff, & Sullivan, 2014, p. 146). Further, the early
learning environment is often characterized by open-ended,
project-based activities that traverse content areas, and learn-
ing is often an ongoing process throughout the day, instead of
siloed into 30- or 60-minute segments (Copple & Bredekamp,
2009). This interdisciplinary context provides the unique opportunity to integrate computer science into
other subject domains as well as use computer science as a vehicle for interdisciplinary learning (Bers &
Horn, 2010; Morgado, Cruz, & Kahn, 2010).

Block-based program-
ming environments
employ touch-based
interfaces and reduced
commands to make
programming accessible.

Computer science is well-
suited for early childhood
education as it offers a
learning environment
where young children
can “play to learn while
learning to play” (Bers
et al., 2014, p. 146).

196 K–12 Computer Science Framework

Computer Science in Early Childhood Education

While some work has been conducted with pre-K children, the majority of studies still focus on
kindergarten-aged or older students, and few studies provide insight on how educators can
implement computer science into their early childhood classroom practices (see DevTech Research
Group, 2016 and Morgado et al., 2010 for exceptions). As Fessakis, Gouli, and Mayroudi (2013)
explain, “[It] is not the availability of developmentally-appropriate computer programming
environments but rather the development of appropriately designed learning activities and
supporting material which would have been applied and verified and could be easily integrated in
everyday school practice by well informed and prepared teachers” (p. 90). As such, this chapter
began the task of articulating specific, research-based ways in which computer science can be
integrated into the early childhood learning environment. A review of the research in early
childhood education related to computer science can be found in Appendix D.

As the examples presented here suggest, integrating computer science-related practices into early
childhood education is not a departure from traditional notions of developmentally appropriate
practice; rather, early computer science practices support play-based pedagogy and extend what
educators are already doing in their classrooms, and they can guide young learners to notice, name,
and recognize how computing shapes the modern world. In this way, computer science in pre-K
brings to life the discipline of computer science, which is expanded in the larger K–12 Computer
Science Framework. Indeed, the framework connections described under each powerful idea in this
chapter make explicit how these computer science-related ideas explored in early childhood build the
foundation for engaging in more specific concepts and practices outlined in the framework.

By understanding computer science as a discipline, teachers can break down the field into
manageable lessons and make the computational world “visible” to students (Welch & Dooley, 2013;
Dooley & Welch, 2015). As such, educators provide a way for children to become active participants in
digital societies, which ultimately will better position them to become thinkers, creators, and leaders
in our increasingly digital world.

K–12 Computer Science Framework 197

Computer Science in Early Childhood Education

References
Bers, M. U., & Horn, M. S. (2010). Tangible programming in early childhood: Revisiting developmental assumptions through

new technologies. In I. R. Berson & M. J. Berson (Eds.), High-tech tots: Childhood in a digital world (pp. 49–70).
Greenwich, CT: Information Age Publishing.

Bers, M.U., Flannery, L.P., Kazakoff, E.R, & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early
childhood robotics curriculum. Computers & Education, 72, 145–157.

Bers, M. U., Ponte, I., Juelich, K., Viera, A., & Schenker, J. (2002). Teachers as designers: Integrating robotics into early
childhood education. Information Technology in Childhood Education Annual, 2002(1), 123–145.

Boston Public Schools. (2016). Computer science in BPS. Retrieved from http://www.bostonpublicschools.org/domain/2054

Camilli, G., Vargas, S., Ryan, S., & Barnett, W. S. (2010). Meta-analysis of the effects of early education interventions on
cognitive and social development. The Teachers College Record, 112, 579–620.

Campbell, F. A., Ramey, C. T., Pungello, E., Sparling, J., & Miller-Johnson, S. (2002). Early childhood education: Young adult
outcomes from the Abecedarian Project. Applied Developmental Science, 6, 42–57.

Chetty, R., Friedman, J. N., Hilger, N., Saez, E., Schanzenbach, D., & Yagan, D. (2011). How does your kindergarten classroom
affect your earnings? Evidence from Project STAR. The Quarterly Journal of Economics, 126(4), 1593–1660. doi: 10.1093/
qje/qjr041

Collaborative for Academic, Social, and Emotional Learning. (2012). Effective social and emotional learning programs—
preschool and elementary school education. Chicago, IL: Author. Retrieved from http://static1.squarespace.com/
static/513f79f9e4b05ce7b70e9673/t/526a220de4b00a92c90436ba/1382687245993/2013-casel-guide.pdf

Copple, C., & Bredekamp, S. (2009). Developmentally appropriate practice in early childhood programs serving children from
birth through age 8. Washington, DC: National Association for the Education of Young Children.

DevTech Research Group. (2016). Early childhood robotics curriculum. Medford, MA: Tufts University DevTech Research
Group. Retrieved from http://tkroboticsnetwork.ning.com/page/robotics-curriculum

Dillenbourg, P. (1999). Collaborative learning: Cognitive and computational approaches. Advances in learning and instruction
series. New York, NY: Elsevier Science, Inc.

Dooley, C. M., & Welch, M. M. (2015). Emergent comprehension in a digital world. In A. DeBruin-Parecki & S. Gear (Eds.),
Developing early comprehension: Laying the foundation for reading success. Baltimore, MD: Brookes.

Elkin, M., Sullivan, A., & Bers, M. U. (2014). Implementing a robotics curriculum in an early childhood Montessori classroom.
Journal of Information Technology Education: Innovations in Practice, 13, 153–169.

Fessakis, G., Gouli, E., & Mayroudi, E. (2013). Problem solving by 5-6 year old kindergarten children in a computer
programming environment: A case study. Computers & Education, 63, 87–97.

Goodyear, P., Jones, C., & Thompson, K. (2014). Computer-supported collaborative learning: Instructional approaches, group
processes, and educational designs. In J. M. Spector, M. D. Merrill, J. Elen, & M. J. Bishop (Eds.), Handbook of research on
educational communications and technology (pp. 439–451). New York, NY: Springer Science and Business Media.

Heckman, J. (2006). Skill formation and the economics of investing in disadvantaged children. Science, 312, 1900–1902.

Heckman, J., & Masterov, D. (2007). The productivity argument for investing in young children. Review of Agricultural
Economics, 29, 446–493.

Klem, A. M., & Connell, J. P. (2004). Relationships matter: Linking teacher support to student engagement and achievement.
Journal of School Health, 74(7), 262–273.

Magnuson, K., Meyers, M. K., Ruhm, C. J., & Waldfogel, J. (2004). Inequality in preschool education and school readiness.
American Educational Research Journal, 41, 115–157.

Maryland State Department of Education. (2015). Computer science. Retrieved from http://archives.marylandpublicschools.
org/MSDE/divisions/dccr/cs.html

http://www.bostonpublicschools.org/domain/2054
http://static1.squarespace.com/static/513f79f9e4b05ce7b70e9673/t/526a220de4b00a92c90436ba/1382687245993/2013-casel-guide.pdf
http://static1.squarespace.com/static/513f79f9e4b05ce7b70e9673/t/526a220de4b00a92c90436ba/1382687245993/2013-casel-guide.pdf
http://tkroboticsnetwork.ning.com/page/robotics-curriculum
http://archives.marylandpublicschools.org/MSDE/divisions/dccr/cs.html
http://archives.marylandpublicschools.org/MSDE/divisions/dccr/cs.html

198 K–12 Computer Science Framework

Computer Science in Early Childhood Education

Mashburn, A. J., Pianta, R. C., Hamre, B. K., Downer, J. T., Barbarin, O. A., Bryant, M., . . . & Howes, C. (2008). Measures
of classroom quality in prekindergarten and children’s development of academic, language, and social skills. Child
Development, 79(3), 832–749. doi: 10.1111/j.1467-8624.2008.01154.x

Morgado, L., Cruz, M., & Kahn K. (2010). Preschool cookbook of computer programming topics. Australasian Journal of
Educational Technology, 26(3), 309–326.

National Research Council. (2009). Mathematics learning in early childhood: Paths toward excellence and equity. Committee
on Early Childhood Mathematics. C. T. Cross, T. A. Woods, & H. Schweingruber (Eds.). Center for Education. Division of
Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.

National Science Board. (2012). Science and engineering indicators 2012 (NSB 12-01). Arlington, VA: National Science
Foundation. Retrieved from https://www.nsf.gov/statistics/seind12/pdf/seind12.pdf

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. NY: Basic Books.

Pianta, R. C., Barnett, W. S., Burchinal, M., & Thornberg, K. R. (2011). The effect of preschool education: What we know, how
public policy is or is not aligned with the evidence base, and what we need to know. Psychological Sciences in the Public
Interest, 10(2), 49–88. doi: 10.1177/1529100610381908

Pianta, R. C., La Paro, K. M., Payne, C., Cox, M. J., & Bradley, R. (2002). The relation of kindergarten classroom environment to
teacher, family, and school characteristics and child outcomes. The Elementary School Journal, 102(3), 225–238.

Resnick, M. (2003), Playful learning and creative societies. Education Update, 8(6). Retrieved May 1, 2009 from
http://web.media.mit.edu/~mres/papers/education-update.pdf

Schweinhart, L. J., Montie, J., Xiang, Z., Barnett, W. S., Belfield, C. R., & Nores, M. (2011). Lifetime effects: The High/Scope
Perry preschool study through age 40: Summary, conclusions, and frequently asked questions. Ypsilanti, MI: High/Scope
Press. Retrieved from http://www.highscope.org/file/Research/PerryProject/specialsummary_rev2011_02_2.pdf

Smith, M. (2016). Computer science for all. Washington, DC: Office of Science and Technology Policy, Executive Office of the
President. Retrieved from https://www.whitehouse.gov/blog/2016/01/30/computer-science-all

Strawhacker, A. L., & Bers, M. U. (2014, August). ScratchJr: Computer programming in early childhood education as a pathway
to academic readiness and success. Poster presented at DR K–12 PI Meeting, Washington, DC.

Twarek, B. (2015). Pre-K to 12 computer science scope and sequence. Retrieved from http://www.csinsf.org/curriculum.html

U.S. Congress Joint Economic Committee. (2012). STEM education: Preparing for the jobs of the future. Washington, DC:
Author. Retrieved from http://www.jec.senate.gov/public/_cache/files/6aaa7e1f-9586-47be-82e7-326f47658320/stem-
education---preparing-for-the-jobs-of-the-future-.pdf

U.S. President’s Council of Advisors on Science and Technology. (2010). Prepare and inspire: K–12 education in science,
technology, engineering, and math (STEM) for America’s future. Washington, DC: Executive Office of the President.
Retrieved from https://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-stemed-report.pdf

Weissberg, R. P., & Cascarino, J. (2013). Academic + social-emotional learning = national priority. Phi Delta Kappan, 95(2),
8–13.

Weissberg, R. P., Durkak, J. A., Doitrovich, C. E., & Gullota, T. P. (2015). Social emotional learning: Past, present, and future. In
J. A. Durlak, C. E. Domitrovich, R. P. Weissberg, & T. P. Gullota (Eds.), Handbook of social and emotional learning: Research
and practice (pp. 3–19). New York, NY: Guilford.

Welch, M. M., & Dooley, C. M. (2013, May). Digital equity for young children: A question of participation. Learning and
Leading with Technology, 28–29.

Yoshikawa, H., Weiland, C., Brooks-Gunn, J., Burchinal, M. R., Espinosa, L. M., Gormley, W. T., . . . & Zazlow, M. J. (2013).
Investing in our future: The evidence base on preschool education. Ann Arbor, MI: Society for Research in Child
Development; New York, NY: Foundation for Child Development.

https://www.nsf.gov/statistics/seind12/pdf/seind12.pdf
http://web.media.mit.edu/~mres/papers/education-update.pdf
http://www.highscope.org/file/Research/PerryProject/specialsummary_rev2011_02_2.pdf
https://www.whitehouse.gov/blog/2016/01/30/computer-science-all
http://www.csinsf.org/curriculum.html
http://www.jec.senate.gov/public/_cache/files/6aaa7e1f-9586-47be-82e7-326f47658320/stem-education---preparing-for-the-jobs-of-the-future-.pdf
http://www.jec.senate.gov/public/_cache/files/6aaa7e1f-9586-47be-82e7-326f47658320/stem-education---preparing-for-the-jobs-of-the-future-.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-stemed-report.pdf

The Role of Research
in the Development and
Future of the Framework

10

K-12 Computer Science Framework 201

The Role of Research in the Development and Future
of the Framework

The K–12 Computer Science Framework was informed by a growing body of research on computer
science education, as well as broader literature from the fields of science, technology, engineering,
and mathematics (STEM) education. In particular, the concepts, practices, and learning progressions at
the heart of the framework were influenced by research
on such topics as how students learn computer science,
how they interact with one another in computing envi-
ronments, and at what age they demonstrate proficiency
in specific concepts.

As computer science education is a young field relative
to other K–12 subject areas, the accompanying educa-
tional research has a number of areas in which to im-
prove, and important questions remain to be addressed
(Lishinski, Good, Sands, & Yadav, 2016). High public demand for computer science learning opportu-
nities and a shortage of trained computer science education researchers have led to much research
being performed by practitioners (i.e., computer science teachers), if research is performed at all
(Franklin, 2015). In addition, the fast-paced technological developments of the past few decades pose
another challenge: research is unable to keep up with new technologies and the increasingly diverse
ways in which we can interact with them. Indeed, the broader literature on technology in education
has shifted away from a focus on the technology medium to a systemic view on media content,

The framework was
informed by a growing
body of research on
computer science education.

202 K–12 Computer Science Framework

The Role of Research in the Development and Future of the Framework

context, and users in an effort to recognize and understand the complex interactions afforded by
novel technologies (e.g., Guernsey, 2012; Valkenburg & Peter, 2013).

Although technology continues to change, the conceptual foundations of computer science educa-
tion and the challenges faced by educators and learners in the field remain the same. For example,
the establishment of block-based programming tools has not removed the conceptual difficulties of
learning and teaching programming concepts. Likewise, misconceptions about specific concepts,
such as variables, loops, and boolean logic, that were articulated in research conducted in the 1980s
(e.g., De Boulay, 1989; Pea & Kurland, 1984; Pea, Soloway, & Spohrer, 1987; Soloway, 1986) have not
dissipated in more recently developed computing environments (e.g., Cooper, Grover, Guzdial, &
Simon, 2014; Grover, Pea, & Cooper, 2016; Guzdial, 2016).

The writers consulted relevant literature to inform early drafts of the framework statements. Later they
used a more structured approach for collecting and incorporating research into the specific concept
and practice statements as well as for determining the structure and placement of such statements
within the K–12 learning progressions. This approach involved searching the existing research in the
field, interviewing experts in key research areas, identifying research related to the core concepts and
practices in the framework, mapping the research to specific concept and practice statements, and
making modifications based on research findings. Considering the maturity of computer science as a
K–12 discipline and the charge of delineating the core concepts and practices in computer science,
research was often insufficient or still developing. In those cases, the writing team relied on its own
expertise and years of experience in K–12 computer science education, as well as the collective
expertise of the computer science education and research communities.

K–12 Computer Science Framework 203

The Role of Research in the Development and Future of the Framework

Advisors played a significant role in constructing the research base used to inform the framework,
as well as providing guidance beyond the available research. As leaders in the fields of computer
science, education, and computer science education research, the advisors brought diverse
knowledge and perspectives from a variety of research areas, such as diversity and equity,
elementary education, computer-supported collaborative learning, human–computer interaction,
social computing, teacher preparation, computational thinking, and interdisciplinary integration.
Their work, and the work of their research partners, is reflected in the research base that informed the
framework’s vision, structure, and content.

This chapter is not intended to be a complete review of all the research pertaining to K–12 computer
science education. Several recent reviews on K–12 computational thinking research (Grover & Pea,
2013) and computing education (Guzdial, 2016) provide broader insights that are beyond the scope
of this chapter but were referenced during the framework development process. Rather, the intent of
this chapter is to describe examples of the ways in which research was used to inform the framework
statements and acknowledge and offer considerations for addressing gaps in the current computer
science education research literature that emerged through the framework development process. The
end of this chapter includes considerations for examining policy and implementation issues.

Research That Informs the Framework
The following sections provide examples of the research that guided the development of the
framework’s core concepts and practices, as well as the specific concept and practice statements.
Appendix E contains a full list of references that the framework writers referred to in their
development of the framework content.

Research That Informs the Concepts
The framework concept statements were arranged according to learning progressions—conceptual
milestones on a path that directs a learner from basic ideas to more sophisticated knowledge.
Fundamentally, learning progressions are built on research from developmental psychology pertaining
to the broader cognitive, social, and behavioral processes that occur throughout a child’s development
as well as the logical structure of specific content within a subject domain. Indeed, content-specific
learning progressions based on such research serve as the foundation for several sets of state math and
science standards (NGA Center for Best Practices & CCSSO, 2010; NGSS Lead States, 2013).

To develop the computer science learning progressions, the framework writers and advisors identified
emergent core ideas that can be introduced early in a student’s education and built upon in later years.
While limited in comparison to other subject domains, computer science learning progression research
was consulted where available.

204 K–12 Computer Science Framework

The Role of Research in the Development and Future of the Framework

Even when evidence for developing learning progressions exists, challenges remain regarding
capturing the complex relationship between students’ prior knowledge, cognitive abilities, and
developmental changes over time and then generalizing the same learning progression to a diverse
population of students (Duschl, Schweingruber, & Shouse, 2007). Learning progressions are especially
pertinent for computer science education, where efforts to build coherent K–12 instructional pathways
for all students are at the forefront of many local and state initiatives (Cernavskis, 2015). Suggestions
for further research to address the challenges in developing learning progressions are discussed later
in this chapter.

For areas where computer science-specific learning progressions were nonexistent, the writers drew
on learning progressions in science and mathematics to guide the placement of related computer
science concepts in a particular grade band. As previously described in the Development Process
chapter, the placement of procedural abstraction, in which
procedures use variables as parameters to generalize
behavior, as an expectation by the end of eighth grade
was informed by the placement of a related concept in
mathematics learning progressions—writing equations with
variables. An understanding of bits (basic units of digital
information) was placed as an expectation across upper
elementary and middle school grade bands based on the
placement of the analogous concepts of particles and atoms
in science learning progressions. In some cases science
learning progressions were used to inform the placement of
very similar concepts, such as models and simulations. As in
science and mathematics, the writers and advisors recognize the need for computer science learning
progressions to continue to evolve as new research emerges.

To increase support for the appropriate placement of concept statements, the learning progressions
were also informed by the experiences of the framework writers and advisors with K–12 students
from diverse populations as well as the experiences of the broader group of K–12 educators and
researchers who reviewed the framework. Below are several more examples of how research informed
the development of concept statements.

Writers drew on learning
progressions in science
and mathematics to
guide the placement of
related computer science
concepts.

K–12 Computer Science Framework 205

The Role of Research in the Development and Future of the Framework

Example 1: Algorithms and programming
Current research on computational thinking, algorithm development, and early programming was
informative for the Algorithms and Programming statements. Research on fourth graders’ attempts
to develop step-by-step instructions and algorithms suggests what students know prior to formal
instruction and potential opportunities for developmentally appropriate curricula (Dwyer, Hill,
Carpenter, Harlow, & Franklin, 2014). This research into early algorithmic development is an important
aspect of this expectation by the end of Grade 5 in the Algorithms and Programming core concept:
“People develop programs using an iterative process involving design, implementation, and review.
Design often involves reusing existing code or remixing other programs within a community. People
continuously review whether programs work as expected, and they fix, or debug, parts that do not.
Repeating these steps enables people to refine and improve programs” (3–5.Algorithms and
Programming.Program Development).

Additional research informed the grade-band placement of specific programming concepts in the
framework. Seiter and Foreman (2013) collected projects created in a block-based programming
environment from students in Grades 1 through 6 and evaluated each project’s demonstration of
computational thinking concepts. They found that programming actions associated with data
representation, such as variable referencing and assignment, are not significantly present until later
grades (i.e., Grades 5 and 6). This finding guided the placement of variables in the 6–8 grade band of
the framework. Seiter and Foreman also found that uses of conditional logic begin to appear in Grade
3 and increase through Grade 6, which guided the placement of conditional statements in the 3–5
grade band of the framework.

206 K–12 Computer Science Framework

The Role of Research in the Development and Future of the Framework

The methodology used by Seiter and Foreman to analyze students’ projects evokes questions of the
conditions under which it works and does not work. Future research is required to validate whether
analyzing students’ program code can accurately infer what they understand. For example, Aivaloglou
and Hermans (2016) analyzed 250,000 Scratch projects and found that procedures and conditional
loops were not commonly used. These results do not mean that students are not able to use proce-
dures or conditional loops or that these concepts should be taught at a later age; the absence of
these constructs may be due to the specific programming environment used or simply students’
desire to use the tool in a particular way. A promising avenue of research is using written reflections
and student interviews to evaluate computational artifacts. For example, Brennan and Resnick (2012)
have explored the use of artifact-based interviews to assess what students understand and their
rationale for programming decisions.

Example 2: Impacts of Computing
There is also research on the influence of culture on individuals’ interactions with technology (e.g.,
Evers & Day, 1997; Leidner & Kayworth, 2006). This research primarily informs the Impacts of Comput-
ing statements in the Culture subconcept. For example, the following statement draws upon the
findings of Evers and Day (1997) that culture influences design preferences and acceptance of an
interface: “The development and modification of computing technology is driven by people’s needs
and wants and can affect groups differently. Computing technologies influence, and are influenced by,
cultural practices” (3–5.Impacts of Computing.Culture). The next statement in the Culture progression
draws upon the work of Leidner and Kayworth (2006), whose review of culture and information
technology literature concluded that culture influences information and technology and vice versa:
“Advancements in computing technology change people’s everyday activities. Society is faced with
tradeoffs due to the increasing globalization and automation that computing brings” (6–8.Impacts of
Computing.Culture).

In each of these examples, it should be noted that this research relates to and informs the concepts in
the framework but that more research is needed to specifically target the developmental appropriate-
ness of the concepts within the context of a learning progression.

Research That Informs the Practices
Key research studies provided a foundation for the identification of the core practices in the frame-
work as well as the practice statements in each core practice. Weintrop et al. (2015) define a computa-
tional thinking taxonomy for science and mathematics consisting of practices in four main categories:
data, modeling and simulation, computational problem solving, and systems thinking. This research
was helpful in addressing the framework’s goal of empowering students to learn, perform, and ex-
press themselves in other fields and interests by helping identify computational practices that had
application within and beyond computer science. Another report that influenced the set of core
practices in the framework was Assessment Design Patterns for Computational Thinking Practices in

K–12 Computer Science Framework 207

The Role of Research in the Development and Future of the Framework

Secondary Computer Science (Bienkowski, Snow, Rutstein, & Grover, 2015). In this report, Bienkowski
et al. describe their approach to designing assessments to measure students’ computational thinking
abilities. This work included the creation of a test domain consisting of key constructs, such as
“Design and apply abstractions and models” and “Collaborate with peers on computing activities”
(p. 10), many of which inspired and overlap with the framework’s practices.

The following paragraphs provide some examples of research that informed specific core practices
and practice statements. It should be noted that although these studies informed the practices in the
framework, some require additional research to provide direct support within a K–12 context.

Research focusing on students traditionally underrepresented in computer science, such as students
with disabilities, females, and students from some minority groups, influenced the identification of the
first practice, Fostering an Inclusive Computing Culture. Ladner and Israel (2016) argue for consider-
ations for including all students in computer science and outline challenges that include the need for
culturally relevant pedagogy and increasing relevance for nontraditional computer science students.
Other work identifies strategies and resources that teachers can integrate into lessons to encourage a
diverse set of students to participate and learn (Israel, Wherfel, Pearson, Shehab, & Tapia, 2015).
Although not in a classroom context, workplace research about the greater effectiveness of culturally
diverse groups as compared to culturally homogeneous groups (e.g., Watson, Kumar, & Michaelsen,
1993) informed this practice statement: “Include the unique perspectives of others and reflect on
one’s own perspectives when designing and developing computational products” (P1.Fostering an
Inclusive Computing Culture.1). Research also suggests that self-determination (or self-advocacy) is
critically important for students with disabilities (Wehmeyer, 2015; Wehmeyer et al., 2012) and is
reflected in the third practice statement, “Employ self- and peer-advocacy to address bias in interac-
tions, product design, and development methods” (P1.Fostering an Inclusive Computing Culture.3).

Specific research related to collaboration informed the statements in Collaborating Around Computing.
For example, previously mentioned research found that culturally diverse teams in the workplace are
more effective at identifying problem perspectives and generating alternative solutions than homoge-
neous teams (Watson, Kumar, & Michaelsen, 1993). This research influenced the inclusion of this
statement: “Cultivate working relationships with individuals possessing diverse perspectives, skills, and
personalities” (P2.Collaborating Around Computing.1). Although research points to students of different
abilities learning more in similar or mixed-ability levels (i.e., lower ability students learn more in
mixed-ability groups) (Lou, Abrami, & d’Apollonia, 2001), Collaborating Around Computing is about
groups with diverse skills, rather than abilities. Small-scale research on pair programming, a pedagogical
technique for groups working at the same computer, suggests that “less equitable pairs sought to
complete tasks quickly and this may have led to patterns of marginalization and domination” and that
“[t]hese findings are important for understanding mechanisms of inequity and designing equitable
collaboration practices in computer science” (Lewis & Shah, 2015, p. 41). This research informed the
following practice statement: “Create team norms, expectations, and equitable workloads to increase

208 K–12 Computer Science Framework

The Role of Research in the Development and Future of the Framework

efficiency and effectiveness” (P2.Collaborating Around Computing.2). Further research is required to
study the effect of this practice on learning computer science, in addition to collaboration.

There is a body of literature around students’ creation of computational artifacts, such as games, apps,
and animations. This research provides some of the foundation for the statements in Creating Compu-
tational Artifacts. For example, a study of students’ programming projects in the Scratch environment
suggests that learning and computational thinking are supported through remixing parts of existing
artifacts (Dasgupta, Hale, Monroy-Hernández, & Hill, 2016). Other work suggests that a three-stage
progression that helps learners advance from the role of user to modifier to creator of computational
artifacts can also build computational thinking (Lee et al., 2011). These examples of research inform
the act of remixing and inform the learning progression for this practice statement: “Modify an
existing artifact to improve or customize it” (P5.Creating Computational Artifacts.3).

Additional literature in the field provides general guidance for other core practices. For example,
arguments about the benefits and importance of teaching and learning abstraction (e.g., Sprague &
Schahczenski, 2002) generally inform Developing and Using Abstractions as a core practice. The
second practice statement in Recognizing and Defining Computational Problems, “Decompose
complex real-world problems into manageable subproblems that could integrate existing solutions or
procedures,” is informed by the benefits of breaking down a program and labeling sections with
subgoals (Morrison, Margulieux, & Guzdial, 2015). Research on university students in introductory
programming classes, most of whom were computer science and engineering majors, shows positive
outcomes associated with testing programs early in the development process (Buffardi & Edwards,
2013) and informs the practice of Testing and Refining Computational Artifacts. Further research is
required to validate this outcome with K–12 students in a general population.

K–12 Computer Science Framework 209

The Role of Research in the Development and Future of the Framework

Research Agenda
A vision of computer science education, at the scale, rigor, and level of coherence that the framework
promotes, is a new frontier for the American education system. Research will be required to both
evaluate the implementation of K–12 computer science and evolve the goals and scope of computer
science education to reflect the lessons learned from the early years of implementation. Further
research will illuminate more effective ways for students of all ages to learn computer science and for
teachers to deliver instruction and provide meaningful experiences for all students.

The need for research on K–12 computer science
education provides a unique opportunity for research-
ers in computing education and learning sciences. The
following sections describe a suggested research
agenda that is guided by areas identified in the
framework development process as lacking a solid
research foundation or requiring further study: equity
and access, learning progressions, pedagogical
content knowledge, and facilitating learning in other
disciplines. These categories do not stand alone;
research in these areas can and should overlap and
must be explored together to advance computer
science education as a whole.

The primary goal of the following research considerations
is to inform future iterations of the current framework,
which, in turn, can inform the broader field of K–12
computer science education. The suggestions are guided by the framework’s vision of K–12 computer
science and intentionally adopt a policy and practice lens in an effort to ensure that future research has
real-world, practical implications that drive computer science education teaching and learning in classroom.

Equity and Access
The framework’s intent is to provide a computer science foundation for all students regardless of
their background, physical challenges, learning differences, or future career aspirations. Despite
the growing demand for individuals with computer science skills (BLS, 2015) and an increased focus
on achieving a more diverse cohort of computer scientists (Sullivan, 2014), the field remains predomi-
nantly male and disproportionately White and Asian (Marcus, 2015). Indeed, of all the STEM fields,
computer science consistently has the largest gender disparities, with women making up only 23% of
the computing industry—a figure that has not changed for more than a decade (BLS, 2015; NSF,
2014). Similarly, Black and Hispanic individuals make up only 14% of the computing field, and they are
less likely to have access to computer science courses and technology (Google & Gallup, 2015b;
Margolis, Estrella, Goode, Holme, & Nao, 2010).

Learner-Centered Design of
Computing Education (Guzdial,
2016) provides a research review
of issues such as how computer
science is currently taught, why it
should be taught, and challenges
in teaching it to all students.
Chapter seven includes additional
K–12 computer science research
questions pertaining to elementary
and secondary school.

210 K–12 Computer Science Framework

The Role of Research in the Development and Future of the Framework

Previous work on equity and access in K–12 computer science has approached the topic from a variety
of angles and provides some initial insight to build on in future research endeavors. Projects have
explored interpersonal communication (Lewis & Shah, 2015), systemic issues and preparatory privilege
within schools (Margolis et al., 2010), and developing culturally relevant curriculum and evaluating its
effectiveness at mitigating inequity (Margolis et al., 2012). Based on a review of literature regarding
gender disparities in STEM, Blickenstaff (2005) suggested seven practical ways for educators, adminis-
trators, and curriculum developers to create more positive learning environments for all students.
Above and beyond providing more equitable access to courses and resources, Blickenstaff (2005)
suggests creating curricular materials that emphasize the real-world impact of STEM, including how
the fields can help improve quality of life and help solve
societal issues. Others have noted the critical role that societal
stereotypes play in dissuading girls and students of color from
entering the computer science field (e.g., Goode, Estrella, &
Margolis, 2006; Google & Gallup, 2015a).

Unless K–12 computer science education grows in an equita-
ble way, there is little reason to believe the call for increased
diversity in the field will be answered. To ensure equity in
computer science education and technology-related indus-
tries, the research field can work toward an evidence-based
understanding of the factors that support inclusive computing
environments as well as practical solutions for increasing
access, interest, and efficacy in traditionally underrepresented
student populations.

At the most basic level, researchers can track not only overall K–12 computer science course enroll-
ment numbers but also the diversity of participation, including any differences in access and engage-
ment for students from traditionally underrepresented groups. This work will become even more
critical as state and district implementation efforts go to scale, opening up the very real possibility of
mismatched intentions (i.e., computer science for all) and reality (i.e., computer science for a select
few). Researchers can probe deeper into understanding the role of teachers and school administra-
tors, as well as characteristics of the school-, district-, and state-level contexts, to better understand
how individual characteristics and dispositions (e.g., socioeconomic status, race/ethnicity, gender,
spoken language, self-efficacy, prior experience, etc.) intersect with these relational and institutional
contexts to shape students’ experience, success, and sustained engagement in computer science.
This work includes studying the classroom experiences of students from underrepresented groups;
potential differences in levels of interest, self-efficacy, and achievement; and the effectiveness of
approaches aimed at proactively addressing such gaps.

Researchers suggest
creating curriculum that
emphasizes the real-
world impact of STEM,
including how the fields
can help improve quality
of life and help solve
societal issues.

K–12 Computer Science Framework 211

The Role of Research in the Development and Future of the Framework

By monitoring K–12 computer science education trends now, researchers set the stage for longitudinal
studies that can provide insight into the long-term implications of students’ computer science experi-
ences as well as a better understanding of the differences between those who choose to pursue
computer science and those who take other academic and career paths. Such long-term data will be
critical for understanding the most influential factors—such as access to computer science opportuni-
ties, student experiences, and interest and self-efficacy in computer science—for engaging and
sustaining a diverse computing industry.

More information about equity and access can be found in the Equity in Computer Science
Education chapter.

Learning Progressions
Learning progressions provide organizational structure to the framework and are critical for ensuring
coherence throughout a computer science education pathway. Learning progressions have been
developed in science and mathematics education research (e.g., Achieve, 2015) but have room to
grow in computer science education (Seiter & Foreman, 2013). Learning progression research is crucial
for informing future versions of the framework and influencing student learning and teacher practices.
Students are directly affected by developmentally inappropriate and incomplete learning progres-
sions, as they could lead to poor transfer of knowledge (Perkins & Salomon, 1988) or the development
of misconceptions. As suggested in Taking Science to School, “well-tested ideas about learning
progressions could provide much needed guidance for both the design of instructional sequences
and large-scale and classroom-based assessments” (NRC, 2007, p. 220).

212 K–12 Computer Science Framework

The Role of Research in the Development and Future of the Framework

Importantly, the development of learning progressions does not merely entail decreasing the rigor of
content and processes found appropriate for older students and pushing it down to younger grade
levels. Also, it cannot be assumed that what works in high school or postsecondary contexts will
work—and is developmentally appropriate—for the primary school context. Indeed, the framework
writers devoted critical attention to ensuring that the progressions made both logical sense in terms
of computer science content and developmental sense to match the different levels of learners across
the K–12 grade span. Thus, while prior research on the postsecondary computer science education
environment can inform current and future studies in the K–12 context, simply replicating this work is
insufficient for the development of sound computer science learning progressions at the K–12 level.

In the K–12 environment, research on computer science learning progressions has just begun, and
much of the current work focuses on either broad computational thinking practices or very specific
computing concepts. For example, work by Dwyer and colleagues (2014) investigated fourth graders’
prior knowledge before engaging in a computational thinking curriculum to construct beginning
anchor points for elementary learning progressions. Follow-up studies examined students’ use of
interactive control structures in a block-based programming language and suggested that the explicit
instruction of programming elements related to user-centered design (e.g., handling events such as
mouse clicks) should wait until the fifth grade (Hansen et al., 2015; Hansen, Iveland, Carlin, Harlow, &
Franklin, 2016). It should be noted that these results are highly contextualized to the programming
environment as outcomes may vary with different environments. This finding also contrasts with
research on children’s creation of digital games and programs, which illustrates that children can
engage in user-centered design processes alongside learning novel computing content and practices
(e.g., Brennan & Resnick, 2012; Kafai & Burke, 2015). Further, while some work has investigated
computer science learning trajectories across multiple grade levels (e.g., Brennan & Resnick, 2012;
Seiter & Foreman, 2013), there remains no consistent basis
for learning progressions across the entire K–12 range.

These mixed and limited findings directly point to the need
for more research to understand not just what computer
science children are cognitively capable of doing and when
but also the most effective ways for such learning to occur
for a larger and more diverse student population. The
framework itself proposes a K–12 learning progression that
can be evaluated and built upon through future research.
These studies can help identify and validate learning
benchmarks within and across grade bands based on the framework’s progressions, as well as use the
framework as a starting point to propose alternative learning progressions to evaluate. This line of
work can also investigate the specific concepts that students have trouble learning, potential miscon-
ceptions, and the age at which these difficulties begin to help inform future revisions to the framework
progressions.

The framework proposes a
K–12 learning progression
that can be evaluated and
built upon through future
research.

K–12 Computer Science Framework 213

The Role of Research in the Development and Future of the Framework

Related, studies can evaluate how specific teaching practices and pedagogical approaches influence
different types of learning outcomes in computer science. Research could address the effects of
highly scaffolded programming environments compared to more open and “free play” contexts;
the influence of social computing (e.g., pair programming) contexts; and the impact of “plugged”
versus “unplugged” curricula on students’ computer science learning and dispositions. Importantly,
this work cannot be siloed to one age or grade level but should be studied with a broader goal of
understanding if and how certain teaching and pedagogical practices differentially influence student
outcomes at a variety of developmental and knowledge levels.

Similarly, studies of younger children can investigate how early acquisition of certain computer science
concepts and practices influences later learning experiences. In addition to investigating whether and
how much computer science knowledge children retain throughout the K–12 experience, even when
there are gaps in learning (Guzdial, 2016, p. 100), longitudinal studies can also emphasize the role
that early computer science experiences play in the development of future computer science attitudes
and self-efficacy.

Further, future research can explore the influence of different learning progressions on students’
attitudes toward and self-efficacy in computer science in addition to achievement outcomes to better
understand if and how different pathways influence future engagement and success in the computing
field. This line of work can be extended to understand such effects for different student populations.
Then it can inform the development of adaptable and flexible learning progressions to ensure that all
students have sound computer science learning opportunities across their elementary and secondary
education.

Pedagogical Content Knowledge
Pedagogical content knowledge (PCK) is the knowledge that teachers have about teaching as a
practice combined with their subject expertise (Shulman, 1986). Additionally, the importance of
contextual factors—including teachers’ attitudes, self-efficacy, and value judgments—as well as
domain specificity permeate more recent conceptualizations of PCK (Bender et al., 2015). In computer
science, PCK might include best practices for explaining computer science concepts, how to address
common misconceptions that teachers and students might have, or understanding how to create an
inclusive computing environment with students from varied backgrounds and prior experience.

Exploring PCK is particularly critical for the scaling up of computer science education, especially
given the varied (and more often lack of) computer science teacher certification requirements
(CSTA Teacher Certification Task Force, 2008). The lack of consistent requirements leaves schools
and districts with the challenge of trying to offer computer science courses without sufficiently
trained teachers. Indeed, one of the major barriers to offering computer science in K–12 classrooms,
according to school leaders, is a lack of teachers with the necessary skills to teach it (Gallup, 2015b).
Achieving the framework’s vision of computer science education for all students requires that the

214 K–12 Computer Science Framework

The Role of Research in the Development and Future of the Framework

research and professional development communi-
ties build teachers’ PCK related to each core area in
the framework. This requirement applies to preser-
vice computer science teachers as well as inservice
teachers integrating computer science into other
subjects.

Prior research on teachers’ computer science PCK
primarily exists at the postsecondary level and
focuses on teaching introductory courses. For
example, research has looked at the effectiveness of sharing PCK through examples that present an
exercise and describe correct and incorrect answers, expected misconceptions, appropriate feedback
to give to students, and methods for provoking discussion (Koppelman, 2007; Koppelman, 2008).
Other research has looked at specific techniques for decreasing cognitive load and increasing perfor-
mance when teaching programming through worked examples, such as prelabeled sections of code
or asking students to generate their own labels
(Morrison, Margulieux, & Guzdial, 2015).

Foundational steps have recently been taken to create a theoretical model for framing primary
and secondary teachers’ computer science PCK (Bender et al., 2015; Hubwieser, Magenheim,
Mühling, & Ruf, 2013; Saeli, Perrenet, Jochems, & Zwaneveld, 2011). Saeli and colleagues (2011)
revealed coaching as a critical component of secondary school teachers’ PCK specific to teaching
programming, noting that coaching can help drive students’ problem-solving, reflection, and
algorithmic thinking processes. The authors also delineated common difficulties for students,
including translating human language into language that is understandable by a computer and being
able to shift between different programming languages (Saeli et al., 2011). In a follow-up study, Saeli,
Perrenet, Jochems, and Zwaneveld (2012) further conceptualized PCK for programming, suggesting
secondary school teachers use simple programming languages to help offset syntactical challenges as
well as provide several meaningful problems for students to solve instead of many problems that lack
real-world and personally relevant meaning.

Work by Hubwieser and colleagues (2013) and Bender and colleagues (2015) to develop a
competency model of teaching computer science is perhaps the most rigorous conceptualization
of K–12 computer science PCK to date. The authors posit five main content dimensions and five
categories of beliefs/motivational orientations required for effective computer science teaching, as
well as provide specific descriptions of what such competencies look like in practice. For example,
Content Dimension 3: Learner-Related Issues describes the need for teachers to understand how to
“adapt their teaching methods, contexts, content representations, and material to the different
requirements that occur due to the diversity of computer science students” (Bender et al., 2015,
p. 528). Similarly, Beliefs/Motivational Orientation Category 2: Beliefs about Teaching and Learning

Achieving the framework’s vision
requires that the research and
professional development
communities build teachers’ PCK.

K–12 Computer Science Framework 215

The Role of Research in the Development and Future of the Framework

in Computer Science suggests teachers should be “convinced that students are learning in an
autonomous way and by critically approaching computer science contents” to be effective computer
science teachers (Bender et al., 2015, p. 528).

Recent projects, such as CSTeachingTips.org, have taken an applied research approach to document
PCK by collecting and reporting best practices from the field (Lewis, 2016). Additionally, the computer
science education community is exploring best practices, such as pair programming (e.g., Denner,
Werner, Campe, & Ortiz, 2014; Hanks, 2008), peer instruction (Kothiyal, Majumdar, Murthy, & Iyer,
2013), and identifying and addressing misconceptions (Ohrndorf, 2015).

Despite the work already being done around computer science PCK, this body of research remains
nascent, and questions regarding computer science PCK at different grade levels, the influence of
contextual factors on teacher practices and student learning, and the role of preservice and inservice
professional development remain unanswered. Although research has conceptualized general models
of K–12 or 9–12 computer science PCK (e.g., Bender et al., 2015; Hubwieser et al., 2013; Saeli et al.,
2011), specific teacher competencies within each grade band are noticeably absent. Thus, future
researchers can evaluate current PCK models across different grade levels, as well as propose and test
new models that provide a more granular understanding of PCK specific to elementary, middle, and
high school teachers.

216 K–12 Computer Science Framework

The Role of Research in the Development and Future of the Framework

Understanding PCK models becomes even more relevant for the younger grade levels, where if
computer science is taught currently, it is integrated into other subject areas. Yadav, Mayfield, Zhou,
Hambrusch, and Korb (2014) suggest teachers should learn computational thinking concepts
themselves to be better prepared to integrate it into their teaching and better able to articulate
broader uses of it as a problem-solving tool in other disciplines. Future studies can extend this work
by exploring how teachers from a variety of disciplines incorporate and implement computational
thinking practices in the classroom and the specific training and preparation they need to do so.
Additionally, research can investigate the most effective integration practices for driving student
interest and learning in computer science and in other subject areas as well.

As learning computer science becomes increasingly popular and moves from an elective to a
mainstream core offering, computer science teachers will need to understand not only what aspects
of computer science students may struggle to learn but also how to apply established techniques
for differentiating instruction to meet the needs of a more diverse population. Recent research has
explored the use of Universal Design for Learning to develop and refine introductory computer
science experiences for a wide range of learners (Hansen, Hansen, Dwyer, Harlow, & Franklin, 2016),
but more work is necessary to fully understand the key components of PCK necessary for ensuring
that all students not only have access to computer science but also have differentiated opportunities
to engage in the field that meet their unique learning needs. As part of this line of inquiry, research
can also explore the unique instructional support and resources needed for students with and
without prior computing experience. This support might include developing and testing supplemental
materials for both ends of the spectrum (e.g., less complex materials for those without experience
and more advanced opportunities for those with more extensive experience), as well as exploring
the role that extended learning opportunities, such as afterschool clubs, camps, internships, and
college-level course taking, can have on student outcomes.

Further, given continued misperceptions of what computer science is, combined with rampant stereo-
types and a clear lack of diversity in the computing field, understanding how teachers view and think
of computer science is just as important to consider as those of students. If teachers are the ones
creating the computing environment, they are also the ones who may be reinstating cultural norms
and stereotypes in their students. A sense of belonging in STEM classrooms is a strong predictor of
women’s interest and motivation in the fields (Good, Rattan, & Dweck, 2012; Smith, Lewis, Hawthorne,
& Hodges, 2013), such that ensuring teachers have strong PCK can have direct impacts on the way
they approach computer science and the classroom environment they create. Future research can
explore how teachers’ computer science attitudes and expectations affect student learning in and
attitudes toward computer science. Part of this work could include research on preservice and
inservice professional development programs to understand how they can help teachers develop
strong self-efficacy and positive attitudes toward computer science alongside helping build their
content knowledge and implementation practices.

K–12 Computer Science Framework 217

The Role of Research in the Development and Future of the Framework

Facilitating Learning in Other Disciplines
As schools work to implement computer science education pathways, many teachers, especially those
teaching in K–8 classrooms, may be asked to integrate computer science content into their current
curriculum. Additionally, middle or high school teachers from other disciplines may be asked to teach
a dedicated computer science course, making it imperative for these teachers to know how to apply
knowledge and skills from their primary disciplines to teaching computer science and vice versa.
Significantly, computing is a medium that can facilitate and support learning across disciplines and
throughout the traditional elementary and middle school curriculum. More than just creating
interdisciplinary connections, computer science is the basis for
a form of expression, just like writing and art—empowering
students’ voice beyond the stringent subject domains of
“literacy” or “programming.”

Whether integrating computer science across the curriculum
or teaching it on its own, teachers will require training and
support beyond content knowledge—they will have to
deal with not only learning a new subject area but also
potentially changing pedagogical practices to reflect a more
interdisciplinary and student-centered learning environment. As with any new education innovation,
strengthening teachers’ confidence in their ability to effectively teach computer science as well as
clearly communicating the value of computer science for student learning will be necessary to ensure
high-quality instruction with meaningful impacts.

Further, outside expertise from educators and scholars from other disciplines is critical as the K–12
computer science knowledge base grows, and collaborations with other fields can lead to interesting,
unforeseen findings. Collaborations among researchers from the fields of education and computer
science are important to building a rigorous and meaningful research community that has broader
impact within and beyond these disciplines.

At the postsecondary level, studies have investigated the feasibility of integrating computer science
with other subject areas, including bioinformatics (LeBlanc & Dyer, 2004), as well as how the use of
multiple forms of media, such as images and sounds, can enhance introductory college-level
computer science courses (Guzdial, 2013). Schulz and Pinkwart (2015) also explored how physical
computing could be integrated into preservice high school-level STEM education courses, finding that
student teachers believed that the essential competencies for computing, physics, and biology were
sufficiently covered in the curriculum. At the K–12 level, researchers have also investigated the
feasibility of integrated computer science curricula. Goldschmidt, MacDonald, O'Rourke, and
Milonovich (2011) discussed simple ways in which computer science concepts can be integrated
across all subject domains at the K–12 level, including gym, art, and music. A similar approach was
taken by Goldberg, Grunwald, Lewis, Feld, and Hug (2012), who brought computing to classes that

Computer science is
the basis for a form of
expression, just like
writing and art.

218 K–12 Computer Science Framework

The Role of Research in the Development and Future of the Framework

middle and high school students already take—including art, health, and social studies. Though the
authors did not explicitly measure student-level outcomes, teachers reported that they, along with
their students, increased their understanding and improved their perceptions of computer science
(Goldberg et al., 2012).

Researchers have also explicitly sought to understand the transfer of computer science learning to
other subjects, especially mathematics, with mixed results (for reviews, see Palumbo, 1990; Simon et
al., 2006). Others have focused on using computing as a medium for learning in other subject areas
and the conditions that must be met to facilitate such learning. For example, Kafai, Franke, Ching,
and Shih (1998) showed that programming could be used as a medium for elementary students to
express fractions, while Schanzer, Fisler, Krishnamurthi, and Felleisen (2015) found positive algebra
achievement outcomes for students who engaged a curriculum that taught algebra through computer
programming. Additionally, Grover, Pea, and Cooper (2016) showed that among middle school
students engaged in an introductory computer science curriculum focused on programming and
algebraic thinking, prior math and computing experience, as well as English language proficiency,
were critical predictors of algebraic thinking outcomes and conceptions of computer science. Lewis
and Shah’s (2012) study of elementary students showed similar results; students with higher incoming
math scores did better on programming assessments. In a subsequent study, Lewis (2014) suggests
that middle school students’ understanding of algebraic substitution can transfer to computer science,
noting difficulties that students have with such knowledge transfer.

Given the mixed findings on learning transfer as well as the lack of research on transfer to non-STEM
domains, more research is needed to provide a solid understanding of whether, how, and in what
context learning computer science can transfer to different subjects and vice versa. Foundational
research can help identify complementary content in noncomputer science subjects and develop
and test different models of content integration. This line of work can include identifying best
practices and effective teaching strategies that lead to student learning across subject areas, including
specific PCK relevant to the integration of multiple subject areas. As many noncomputer science
teachers may be teaching computer science concepts in their classrooms, researchers can also explore
what training and support is necessary to ensure that these teachers develop not only effective
teaching strategies to support student learning but also positive attitudes and self-efficacy in
teaching computer science concepts.

In addition to exploring the more obvious connections between computer science learning and other
STEM content areas, future research can investigate student achievement and attitudinal outcomes in
non-STEM areas, such as literacy, art, and social studies, after receiving computer science instruction
embedded in the given content area. Further, such research can approach these topics with varying
degrees of granularity. For example, at a more granular level, studies could investigate whether
learning debugging in a computer science context transfers to problem solving in mathematics,
while at a broader level, studies could explore the effects of an entire integrated computer science

K–12 Computer Science Framework 219

The Role of Research in the Development and Future of the Framework

curriculum on student learning across all subject areas. Researchers can extend this work to develop a
more nuanced understanding of the conditions that help support such knowledge transfer, including
teacher practices, prior experience, and differences of transfer for different subject domains.

Further, such research can be enhanced through collaborations between computer science researchers
and those from other content areas to explore similarities and differences among PCK and learning
progressions in different domains. Even the National Science Foundation (NSF) has recognized the
importance of such collaborations in its STEM+Computing Partnerships solicitation, which requires
proposed projects to integrate computing into STEM education. Currently funded projects hold promise
for advancing the field as they investigate topics ranging from integrating computer science into
elementary and secondary science and math classrooms to the development of novel interdisciplinary
computer science curricula to a focus on professional development for teachers and school administra-
tors for scaling such initiatives. Future studies can build upon findings from these projects and continue
the collaborative efforts under way in an effort to advance not only computer science education but also
teaching and learning across the K–12 education sector more broadly.

Limitations
Despite continued progress in K–12 computer science education research, the field remains in
need of rigorous studies to provide empirical evidence to address many of the unanswered questions
described in the above research agenda. The evidence base on which the framework rests is
incomplete, and limitations in current research are discussed below. These limitations are not
all-encompassing, yet they can be viewed as actionable issues that offer additional insight for
future studies.

First, and perhaps most pressing, much of the published research on U.S. computer science
education is conducted with university students, many of whom have elected into undergraduate

220 K–12 Computer Science Framework

The Role of Research in the Development and Future of the Framework

programs in computer science, with fewer studies targeting K–12 students. While the international
research community provides some insight into the K–12 education context, international school
systems vary dramatically from the U.S. system. As neither of these two contexts—domestic postsec-
ondary or international K–12—are easily transferred to the U.S. K–12 environment, there remains a
limited research base related to K–12 computer science classrooms in the United States (Hubwieser et
al., 2011). The K–12 Computer Science Framework promotes a renewed focus on computer science
education research and calls specifically for further studies to validate the proposed learning progres-
sions and to inform future revisions to the framework.

Second, the research that does exist in the K–12 setting is often limited in sample and scope, making
it difficult to generalize findings across different grade levels and student populations as well as
computer science concepts and curricula. More recent initiatives have started tackling this limitation
by adapting mainstream curricular materials for students with learning differences (e.g., Israel et al.,
2015; Wille, Pike, & Century, 2015); integrating computer science into elementary literacy into a large,
diverse school district (Milenkovic, Acquavita, & Kim, 2015); evaluating activities aimed at helping
diverse learners with varying levels of mathematics and English language preparation in large urban
school districts (Grover, Jackiw, & Lundh, 2015); developing learning progressions for the K–8 level
(Isaacs et al., 2016); and conducting large-scale implementation evaluations across the entire K–12
learning
environment (Mark & DeLyser, 2016). While more research is certainly needed, the ideas and
recommendations that are produced from these early initiatives may inform future revisions to the
framework and its byproducts, such as standards, curriculum, and professional development.

Finally, as with any applied research setting, methodological limitations pose threats to the validity of
research findings; this issue may be even more pertinent in K–12 computer science education because
of the novelty of conducting research at this level and thus the lack of pre-established valid and
reliable measures to do so. Although there is ongoing work to develop sound instruments (e.g., Wille
& Kim, 2015), the variety of curricular materials and implementation approaches in computer science
education efforts calls for more methodological research studies to understand best practices for
measuring what K–12 computer science education looks like at the classroom level, the factors that
affect implementation, and ultimately student and teacher attitudinal and learning outcomes.

Policy and Implementation Considerations
The recent influx of attention from federal, state, and local education agencies has brought K–12
computer science education into the national spotlight, and at all levels of government, new and
recommended policies will continue to be advanced. These policies include counting computer
science toward a graduation requirement and expecting all schools within a district to engage all
students in at least one computer science experience at all levels of learning (i.e., elementary, middle,
and high school). At the same time, how local entities enact such policies and what these policies

K–12 Computer Science Framework 221

The Role of Research in the Development and Future of the Framework

look like in the classroom are yet to be clearly understood. Implementation of any education
innovation is sure to be complex, with many moving parts and factors that affect both the fidelity of
implementation and subsequent teacher and student outcomes.

An extensive review of education innovation implementation research by Century and Cassata (in
press) provides contextual framing for understanding the complexities of computer science imple-
mentation in the K–12 education environment. The authors suggest five facets of implementation
research:

1. informing the design and development of innovations;
2. evaluating whether and to what extent an innovation achieves its desired outcomes;
3. understanding why an innovation works, for whom, and in what contexts;
4. improving innovation design and use in applied settings; and
5. informing theory development (Century & Cassata, in press).

These five categories move beyond fidelity of implementation to understand the what, why, how, and
for whom of education innovations in an effort to capture all facets that influence the outcomes of
such initiatives. At a more granular level, implementation research can work to measure both structural
factors (e.g., frequency and duration; content covered and omitted; modification and supplementa-
tion) and interaction factors (e.g., teacher facilitation of pedagogical practices, attitudes toward the
innovation, teacher and student interest and self-efficacy in the content domain) (Century, Cassata,
Rudnick, & Freeman, 2012).

Based on these broader conceptions of education innovation implementation research, there
are several considerations regarding policy and curricular innovations in K–12 computer science
education. These considerations include understanding and measuring curriculum and assessment;
course and instructional pathways; teacher professional development; and community and industry
stakeholder involvement. For example, in addition to using traditional achievement assessments
to measure computer science learning (e.g., multiple-choice and short-answer tests), more
“nontraditional” measures could be developed, such as performance tasks and student work
portfolios, that capture the richness and creativity of the computing environment otherwise missed on
most standard assessments. Similarly, various course models are sure to be explored (e.g., integrated
courses, standalone courses, pathways of courses, and career and technical education), such that an
important component to understanding implementation will be exploring the most effective
models for different grade levels, student populations, and learning goals. Part of this work necessarily
includes understanding the best practices for ensuring that teachers have sufficient training and
support both prior to and during their time in the classroom, as well as establishing more consistent
certification opportunities and requirements. Additionally, given the focus on encouraging students to
persist in the computing field over the long term, community and industry partnerships are also likely
to play a role in how schools and districts engage their students in computer science.

222 K–12 Computer Science Framework

The Role of Research in the Development and Future of the Framework

To address these implementation components, school and district leaders will also require additional
knowledge, resources, and support in their effort to provide high-quality computer science instruction
and professional development. Indeed, a major factor in education innovation implementation is
leadership support and the value placed on enacting the innovation (Century et al., 2012; Century &
Cassata, in press). One initiative, LeadCS.org, offers researcher-developed tools and anecdotes from
teacher, school, district, and partner leaders to help education leaders bring or enhance existing
computer science initiatives to their own contexts. The website also provides links to additional
resources related to infrastructure, instruction, and implementation.

Looking Toward the Future
The K–12 Computer Science Framework is informed by research that is presently available, but
there is still a long way to go. A review of the current research found areas of alignment with the
framework’s core concepts, practices, and statements,
resulting in a more compelling and robust framework.
However, this research review also identified gaps in the field,
which were gathered to create a research agenda moving
forward. This agenda creates an opportunity for current and
future computer science education researchers to explore
meaningful research questions to advance the field and
support the framework.

As computer science education spreads, particularly with the
use of this framework, more questions will need to be asked
and more studies completed to suggest answers. The community of stakeholders in computer science
education, including researchers, teachers, administrators, and policymakers, must come together to
advance the research that will underpin the future of K–12 computer science education.

LeadCS.org offers
researcher-developed
tools to help education
leaders with computer
science initiatives.

K–12 Computer Science Framework 223

The Role of Research in the Development and Future of the Framework

References
Achieve. (2015). The role of learning progressions in competency-based pathways. Retrieved from

http://www.achieve.org/files/Achieve-LearningProgressionsinCBP.pdf

Aivaloglou, E., & Hermans, F. (2016, September). How kids code and how we know: An exploratory study on the Scratch
repository. In Proceedings of the Twelfth Annual International Conference on International Computing Education Research
(pp. 53–61).

Bender, E., Hubwieser, P., Schaper, N., Margaritis, M., Berges, M., Ohrndorf, L., . . . Schubert, S. (2015). Towards a competency
model for teaching computer science. Peabody Journal of Education, 90(4), 519–532. doi:
10.1080/0161956X.2015.1068082

Bienkowski, M., Snow, E., Rutstein, D. W., & Grover, S. (2015). Assessment design patterns for computational thinking
practices in secondary computer science: A first look (SRI technical report). Menlo Park, CA: SRI International. Retrieved
from http://pact.sri.com/resources.html

Blickenstaff, J. C. (2005). Women and science careers: Leaky pipeline or gender filter? Gender and Education, 17(4), 369–386.
doi: 10.1080/09540250500145072

Brennan, K. & Resnick, M. (2012). Using artifact-based interviews to study the development of computational thinking in
interactive media design. Paper presented at the annual meeting of the American Educational Research Association,
Vancouver, BC, Canada.

Buffardi, K., & Edwards, S. H. (2013, August). Effective and ineffective software testing behaviors by novice programmers.
In Proceedings of the Ninth Annual International ACM Conference on International Computing Education Research
(pp. 83–90).

Bureau of Labor Statistics. (2015). Occupational employment statistics [Data file]. Retrieved from http://www.bls.gov/oes

Century, J., & Cassata, A. (in press). Measuring implementation and implementation research: Finding common ground on
what, how and why. Review of Research in Education, Centennial Edition. American Educational Research Association.

Century, J., Cassata, A., Rudnick, M., & Freeman, C. (2012). Measuring enactment of innovations and the factors that affect
implementation and sustainability: Moving toward common language and shared conceptual understanding. Journal of
Behavioral Health Services & Research, 39(4), 343–361.

Cernavskis, A. (2015, June 25). In San Francisco, computer science for all . . . soon. The Hechinger Report. Retrieved from
http://hechingerreport.org/san-francisco-plans-to-be-first-large-district-to-bring-computer-science-to-all-grades/

Computer Science Teachers Association Teacher Certification Task Force. (2008). Ensuring exemplary teaching in an essential
discipline: Addressing the crisis in computer science teacher certification. New York, NY: Computer Science Teachers
Association and the Association for Computing Machinery.

Cooper, S., Grover, S., Guzdial, M., & Simon, B. (2014). A future for computing education. Communications of the ACM,
57(11), 34–46.

Dasgupta, S., Hale, W., Monroy-Hernández, A., & Hill, B. M. (2016, February). Remixing as a pathway to computational
thinking. In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing
(pp. 1438–1449).

De Boulay, B. (1989). Some difficulties of learning to program. In E. Soloway and J. Spohrer (Eds.), Studying the novice
programmer. Hillsdale, NJ: Lawrence Erlbaum Associates.

Denner, J., Werner, L., Campe, S., & Ortiz, E. (2014). Pair programming: Under what conditions is it advantageous for middle
school students? Journal of Research on Technology in Education, 46(3), 277–296.

Dwyer, H., Hill, C., Carpenter, S., Harlow, D., & Franklin, D. (2014, March). Identifying elementary students’ pre-instructional
ability to develop algorithms and step-by-step instructions. In Proceedings of the 45th ACM Technical Symposium on
Computer Science Education (pp. 511–516).

http://www.achieve.org/files/Achieve-LearningProgressionsinCBP.pdf
http://pact.sri.com/resources.html
http://www.bls.gov/oes
http://hechingerreport.org/san-francisco-plans-to-be-first-large-district-to-bring-computer-science-to-all-grades/

224 K–12 Computer Science Framework

The Role of Research in the Development and Future of the Framework

Evers, V., & Day, D. (1997). The role of culture in interface acceptance. In S. Howard, J. Hammond, & G. Lindgaard (Eds.),
Proceedings of Human-Computer Interaction INTERACT’97 (pp. 260–267). Sydney, Australia: Chapman & Hall.

Franklin, D. F. (2015, February). Putting the computer science in computing education research. Communications of the ACM,
58(2), 34–36.

Goldberg, D. S., Grunwald, D., Lewis, C., Feld, J. A., & Hug, S. (2012). Engaging computer science in traditional education:
The ECSITE project. In Proceedings of the 17th ACM Annual Conference on Innovation and Technology in Computer
Science Education (pp. 351–356).

Goldschmidt, D., MacDonald, I., O’Rourke, J., & Milonovich, B. (2011). An interdisciplinary approach to injecting computer
science into the K–12 classroom. Journal of Computing Science in College, (26)6, 78–85.

Good, C., Rattan, A., & Dweck, C. S. (2012). Why do women opt out? Sense of belonging and women’s representation in
mathematics. Journal of Personality and Social Psychology, 102(4), 700–717.

Goode, J., Estrella, R., & Margolis, J. (2006). Lost in translation: Gender and high school computer science. In W. Aspray & J.
M. Cohoon (Eds.), Women and information technology: Research on underrepresentation (pp. 89–113). Cambridge, MA:
MIT Press.

Google & Gallup. (2015a). Images of computer science: Perceptions among students, parents, and educators in the U.S.
Retrieved from http://g.co/cseduresearch

Google & Gallup. (2015b). Searching for computer science: Access and barriers in U.S. K–12 education. Retrieved from
http://g.co/cseduresearch

Grover, S., Jackiw, N., & Lundh, P. (2015). Thinking outside the box: Integrating dynamic mathematics to advance
computational thinking for diverse student populations. Abstract. Retrieved from http://www.nsf.gov/awardsearch/
showAward?AWD_ID=1543062

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational Researcher, 41(1),
38–43.

Grover, S., Pea, R., & Cooper, S. (2016, March). Factors influencing computer science learning in middle school. In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education (pp. 552–557), Memphis, TN.

Guernsey, L. (2012). Screen time: How electronic media from baby videos to educational software affects your young child.
Philadelphia, PA: Basic Books.

Guzdial, M. (2013, August). Exploring hypotheses about media computation. In Proceedings of the Ninth Annual International
ACM Conference on International Computing Education Research (pp. 19–26).

Guzdial, M. (2016). Learner-centered design of computing education: Research on computing for everyone. Synthesis lectures
on human-centered informatics. Morgan and Claypool.

Hanks, B. (2008). Problems encountered by novice pair programmers. Journal on Educational Resources in Computing
(JERIC), 7(4), Article 2.

Hansen, A., Dwyer, H., Hill, C., Iveland, A., Martinez, T., Harlow, D., & Franklin, D. (2015). Interactive design by children: A
construct map for programming. In Proceedings of the 14th International Conference on Interaction Design and Children
(pp. 267–270).

Hansen, A., Hansen, E., Dwyer, H., Harlow, D., & Franklin, D. (2016). Differentiating for diversity: Using universal design for
learning in computer science education. In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education (pp. 376–381).

Hansen, A., Iveland, A., Carlin, C., Harlow, D., & Franklin, D. (2016, June). User-centered design in block-based programming:
Developmental and pedagogical considerations for children. In Proceedings of the 15th International Conference on
Interaction Design and Children (pp. 147–156).

Hubwieser, P., Armoni, M., Brinda, T., Dagiene, V., Diethelm, I., Giannakos, M. N., . . . Schubert, S. (2011, June). Computer
science/informatics in secondary education. In Proceedings of the 16th Annual Conference Reports on Innovation and
Technology in Computer Science Education—Working Group Reports (pp. 19–38).

http://g.co/cseduresearch
http://g.co/cseduresearch
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1543062
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1543062

K–12 Computer Science Framework 225

The Role of Research in the Development and Future of the Framework

Hubwieser, P., Magenheim, J., Mühling, A., & Ruf, A. (2013, August). Towards a conceptualization of pedagogical content
knowledge for computer science. In Proceedings of the Ninth Annual International ACM Conference on International
Computing Education Research (pp. 1–8).

Isaacs, A., Binkowski, T. A., Franklin, D., Rich, K., Strickland, C., Moran, C., . . . Maa, W. (2016). Learning trajectories for
integrating K–5 computer science and mathematics. In 2016 CISE/EHR Principal Investigator & Community Meeting for CS
in STEM Project Description Booklet (p. 79). Retrieved from https://www.ncwit.org/sites/default/files/file_type/pi_book_
compressed_2016.pdf

Israel, M., Wherfel, Q., Pearson, J., Shehab, S., & Tapia, T. (2015). Empowering K–12 students with disabilities to learn
computational thinking and computer programming. TEACHING Exceptional Children, 48(1), 45–53.

Kafai, Y. B., Franke, M. L., Ching, C. C., & Shih, J. C. (1998). Game design as an interactive learning environment for
fostering students’ and teachers’ mathematical inquiry. International Journal of Computers for Mathematical Learning, 3(2),
149–184. doi: 10.1023/A:1009777905226

Kafai, Y. B., & Burke, Q. (2015). Constructionist gaming: Understanding the benefits of making games for learning. Educational
Psychologist, 50(4), 313–334.

Koppelman, H. (2007). Exercises as a tool for sharing pedagogical knowledge. In Proceedings of the 12th Annual SIGCSE
Conference in Innovation and Technology in Computer Science Education (p. 361). doi: 10.1145/1268784.1268933

Koppelman, H. (2008, June). Pedagogical content knowledge and educational cases in computer science: An exploration.
In Proceedings of the Informing Science and IT Education Conference (InSITE) (pp. 125–133), Varna, Bulgaria.

Kothiyal, A., Majumdar, R., Murthy, S., & Iyer, S. (2013, August). Effect of think-pair-share in a large CS1 class: 83% sustained
engagement. In Proceedings of the Ninth Annual International ACM Conference on International Computing Education
Research (pp. 137–144).

Ladner, R., & Israel, M. (2016). “For all” in “computer science for all.” Communications of the ACM, 59(9), 26–28.

LeBlanc, M. D., & Dyer, B. D. (2004). Bioinformatics and computing curricula 2001: Why computer science is well positioned in
a post-genomic world. ACM SIGCSE Bulletin, 36(4), 64–68.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., . . . Werner, L. (2011). Computational thinking for youth in
practice. ACM Inroads, 2(1), 32–37.

Leidner, D. E., & Kayworth, T. (2006). A review of culture in information systems research: Toward a theory of information
technology culture conflict. MIS Quarterly, 30(2), 357–399.

Lewis, C. M. (2014, July). Exploring variation in students’ correct traces of linear recursion. In Proceedings of the Tenth Annual
Conference on International Computing Education Research (pp. 67–74).

Lewis, C. M. (2016). You wouldn’t know it from SIGCSE proceedings, but we don’t only teach CS1 (Abstract Only). In Proceed-
ings of the 47th ACM Technical Symposium on Computing Science Education (p. 494).

Lewis, C. M., & Shah, N. (2012). Building upon and enriching grade four mathematics standards with programming curriculum.
In Proceedings of the 43rd ACM Technical Symposium on Computer Science Education (pp. 57–62).

Lewis, C. M., & Shah, N. (2015, July). How equity and inequity can emerge in pair programming. In Proceedings of the
Eleventh Annual International Conference on International Computing Education Research (pp. 41–50).

Lishinski, A., Good, J., Sands, P., & Yadav, A. (2016, September). Methodological rigor and theoretical foundations of CS
education research. In Proceedings of the Twelfth Annual International Conference on International Computing Education
Research (pp. 161–169).

Lou, Y., Abrami, P. C., & d’Apollonia, S. (2001). Small group and individual learning with technology: A meta-analysis. Review
of Educational Research, 71, 449–521.

Marcus, B. (2015, August 12). The lack of diversity in tech is a cultural issue. Forbes. Retrieved from
http://www.forbes.com/sites/bonniemarcus/2015/08/12/the-lack-of-diversity-in-tech-is-a-cultural-issue/#622c464a3577

Margolis, J., Estrella, R., Goode, J., Holme, J. J., & Nao, K. (2010). Stuck in the shallow end: Education, race, and computing.
Cambridge, MA: MIT Press.

https://www.ncwit.org/sites/default/files/file_type/pi_book_compressed_2016.pdf
https://www.ncwit.org/sites/default/files/file_type/pi_book_compressed_2016.pdf
http://www.forbes.com/sites/bonniemarcus/2015/08/12/the-lack-of-diversity-in-tech-is-a-cultural-issue/#622c464a3577

226 K–12 Computer Science Framework

The Role of Research in the Development and Future of the Framework

Margolis, J., Ryoo, J., Sandoval, C., Lee, C., Goode, J., & Chapman, G. (2012). Beyond access: Broadening participation in
high school computer science. ACM Inroads, 3(4), 72–78.

Mark, J., & DeLyser, L. (2016). CSNYC knowledge forum: Launching research and evaluation for computer science education,
for every school and every student in New York City. Abstract. Retrieved from http://www.nsf.gov/awardsearch/
showAward?AWD_ID=1637654

Milenkovic, L., Acquavita, T., & Kim, D. (2015). Investigating conceptual foundations for a transdisciplinary model integrating
computer science into the elementary STEM curriculum. Abstract. Retrieved from http://www.nsf.gov/awardsearch/
showAward?AWD_ID=1542842

Morrison, B. B., Margulieux, L. E., & Guzdial, M. (2015, July). Subgoals, context, and worked examples in learning computing
problem solving. In Proceedings of the Eleventh Annual International Conference on International Computing Education
Research (pp. 21–29).

National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common core state
standards. Washington DC: Author.

National Research Council. (2007). Taking science to school: Learning and teaching science in grades K–8. Committee on
Science Learning-Kindergarten Through Eighth Grade. R. A. Duschl, H. A. Schweingruber, & A. W. Shouse (Eds.). Board on
Science Education, Center for Education. Division of Behavioral and Social Sciences and Education. Washington, DC: The
National Academies Press.

National Research Council. (2012). A framework for K–12 science education: Practices, crosscutting concepts, and core ideas.
Committee on a Conceptual Framework for New K–12 Science Education Standards. Board on Science Education, Division
of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.

National Science Foundation. (2014). Women, minorities, and persons with disabilities in science and engineering, Table 5–1:
Bachelor’s degrees awarded, by sex and field: 2002–2012 [Data file]. Retrieved from https://www.nsf.gov/statistics/
wmpd/2013/sex.cfm

Next Generation Science Standards Lead States. (2013). Next generation science standards: For states, by states. Washington,
DC: The National Academies Press.

Ohrndorf, L. (2015, July). Measuring knowledge of misconceptions in computer science education. In Proceedings of the
Eleventh Annual International Conference on International Computing Education Research (pp. 269–270).

Palumbo, D. B. (1990). Programming language/problem-solving research: A review of relevant issues. Review of Educational
Research, 60(1), 65–89.

Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer programming. New Ideas in Psychology, 2,
137–168.

Pea, R. D., Soloway, E., & Spohrer, J. C. (1987). The buggy path to the development of programming expertise. Focus on
Learning Problems in Mathematics, 9, 5–30.

Perkins, D. N., & Salomon, G. (1988). Teaching for transfer. Educational Leadership, 46(1), 22–32.

Saeli, M., Perrenet, J., Jochems, W. M., & Zwaneveld, B. (2011). Teaching programming in secondary school: A pedagogical
content knowledge perspective. Informatics in Education, 10(1), 73–88.

Saeli, M., Perrenet, J., Jochems, W. M., & Zwaneveld, B. (2012). Programming: Teachers and pedagogical content knowledge
in the Netherlands. Informatics in Education, 11(1), 81–114.

Schanzer, E., Fisler, K., Krishnamurthi, S., & Felleisen, M. (2015, February). Transferring skills at solving word problems from
computing to algebra through Bootstrap. In Proceedings of the 46th ACM Technical Symposium on Computer Science
Education (pp. 616–621).

Schulz, S., & Pinkwart, N. (2015, November). Physical computing in STEM education. In Proceedings of the Workshop in
Primary and Secondary Computing Education (pp. 134–135).

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1637654
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1637654
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1542842
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1542842
https://www.nsf.gov/statistics/wmpd/2013/sex.cfm
https://www.nsf.gov/statistics/wmpd/2013/sex.cfm

K–12 Computer Science Framework 227

The Role of Research in the Development and Future of the Framework

Seiter, L., & Foreman, B. (2013, August). Modeling the learning progressions of computational thinking of primary grade
students. In Proceedings of the Ninth Annual International ACM Conference on International Computing Education
Research (pp. 59–66).

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher 15(2), 4–14. doi:
10.3102/0013189X015002004

Simon, Fincher, S., Robins, A., Baker, B., Box, I., Cutts, Q., . . . Tutty, J. (2006, January). Predictors of success in a first
programming course. In Proceedings of the Eighth Australasian Computing Education Conference (pp. 189–196), Hobart,
Tasmania, Australia.

Smith, J. L., Lewis, K. L., Hawthorne, L., & Hodges, S. D. (2013). When trying hard isn’t natural: Women’s belonging with and
motivation for male-dominated STEM fields as a function of effort expenditure concerns. Personality and Social Psychology
Bulletin, 39(2), 131–143.

Soloway, E. (1986). Learning to program = learning to construct mechanisms and explanations. Communications of the ACM,
29(9), 850–858.

Sprague, P., & Schahczenski, C. (2002). Abstraction the key to CS1. Journal of Computing Sciences in Colleges, 17(3),
211–218.

Sullivan, G. (2014, May 29). Google statistics show Silicon Valley has a diversity problem. The Washington Post. Retrieved from
https://www.washingtonpost.com/news/morning-mix/wp/2014/05/29/most-google-employees-are-white-men-where-are-
allthewomen/

Valkenburg, P. M., & Peter, J. (2013). The differential susceptibility to media effects model. Journal of Communication, 63,
221–243. doi: 10.1111/jcom.12024

Watson, W. E., Kumar, K., & Michaelsen, L. K. (1993). Cultural diversity’s impact on interaction process and performance:
Comparing homogeneous and diverse task groups. Academy of Management Journal, 36(3), 590–602.

Wehmeyer, M. L. (2015). Framing the future self-determination. Remedial and Special Education, 36(1), 20–23.

Wehmeyer, M. L., Shogren, K. A., Palmer, S. B., Williams-Diehm, K. L., Little, T. D., & Boulton, A. (2012). The impact of the
self-determined learning model of instruction on student self-determination. Exceptional Children, 78(2), 135–153.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2015). Defining computational thinking for
mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127–147.

Wille, S. J., & Kim, D. (2015). Factors affecting high school student engagement in introductory computer science classes. In
Proceedings of the 46th ACM Technical Symposium on Computer Science Education (pp. 675–675), New York, NY. doi:
10.1145/2676723.2691891

Wille, S. J., Pike, M., & Century, J. (2015). Bringing AP Computer Science Principles to students with learning disabilities and/
or an ADHD: The hidden underrepresented group. Abstract. http://www.nsf.gov/awardsearch/showAward?AWD_
ID=1542963

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational thinking in elementary and secondary
teacher education. ACM Transactions on Computing Education, 14(1), Article 5, 1–16.

https://www.washingtonpost.com/news/morning-mix/wp/2014/05/29/most
http://10.1111/jcom
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1542963
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1542963

Appendices

K-12 Computer Science Framework 231

Appendix A: Feedback and Revisions
Public review and feedback were essential for the development of the framework. The framework
underwent three public review periods. The first review period included a draft of the 9–12 grade
band concept statements and the practice overviews. The second and third included full drafts of
concept statements, overviews, and practices and included a glossary and a preface that described
the framework and provided a brief overview of the important chapters in the framework. The other
chapters intended for inclusion in this document were not included in this public review process.

Each public review period lasted two to three weeks. The review periods were announced widely:
each organization on the steering committee sent out an email or posted an announcement on its
blog; each state participating in the development was asked to hold a focus group; each advisor was
asked to review the framework; emails were sent to dozens of organizations in computer science and
education; and the framework was emailed to the hundreds of members of the K–12 Computer
Science Framework email list.

The questions in the online review form differed slightly for each review, as the type of feedback the
writers needed changed as the statements developed. All three review forms asked reviewers to rate
their overall impression of the draft (choosing from excellent, very good, good, fair, and poor). On
each review form, reviewers were asked to rate each concept statement and practice on two criteria:
whether it was clear and understandable to a computer science novice and whether it was important
for all students to know (the phrasing of the questions varied slightly between review periods). Open
comment boxes were also provided throughout the form for the reviewers to highlight strengths and
give suggestions for improvement. Additionally, the second review form asked reviewers to rate each
practice progression and concept statement on whether it was developmentally appropriate for the
grade band. The third review form asked reviewers to rate each concept overview, subconcept
overview, practice overview, and practice progression on whether the level of detail was appropriate
for understanding the overview or progression.

Throughout the writing process, the writing teams reviewed the concept statements using a list of
criteria. The second public review asked reviewers to rate the framework using the same list:

• Essential: Is this a core idea of computer science? Is it important and essential for all students?
How does it make for a computationally literate person? What benefit does it have for the
person and society?

• Powerful in Application: Is knowing the concept or performing the practice useful? Is it useful
for solving problems, useful for illuminating other ideas downstream, and helpful for understand-
ing a larger body of knowledge? Does it elicit extensions, foster interdisciplinary connections,
and show potential for a wide range of applications?

232 K–12 Computer Science Framework

Appendix A: Feedback and Revisions

• Relevant and Clear: Is the statement understandable by teachers and relevant to students? Will
computer science novices feel the concept statement is approachable/inviting?

• Diverse: How well do the framework statements describe a diverse, equitable, and accessible
vision of computer science?

• Research-Informed: Is the statement informed by research? How can the statement be revised
to reflect computer science education research? Does the statement point to possible areas of
research?

• Developmentally Appropriate: Is it developmentally appropriate and suitable for high school?
• Interdisciplinary: Is the framework statement useful and applicable outside of the domain of

computer science? Are there opportunities to make interdisciplinary connections? Does it
complement concepts and practices in math, science, etc.?

• Promoting College and Career Readiness: How well do the concepts and practices contribute
to career and college readiness?

Overall, 152 individuals submitted reviews (40 of whom also participated in a group review), and more
than 306 individuals participated in a group review. More than 50 group reviews were held over the
three review periods. These reviews included representation from 38 U.S. states, 1 U.S. territory, and 7
international locations. Figure A.1 shows the general breakdown of occupations reported by reviewers.

At the end of each review period, the development team reviewed all the input, identified major
themes, analyzed the ratings, and provided recommendations to the writing team based on the data.
The writing team was provided access to the themes, recommendations, and all of the anonymized
raw comments and survey data.

Figure A.1: Occupations of reviewers

 Teacher 53%

 Postsecondary Faculty 20%

 Teacher Educator 19%

 Private Sector 14%

 Educational Researcher 12%

 Curriculum Specialist 11%

 District Administrator 9%

 State Administrator 5%

 Technology Coach 5%

 School Administrator 2%

 Other 2%

K–12 Computer Science Framework 233

Appendix A: Feedback and Revisions

The next three sections describe the overall feedback themes that applied to the overall framework,
major themes that applied to core concepts, and major themes for the practices. Although the writers
examined all feedback, they were given license to decide how the feedback should be addressed.
They applied the data they were presented from the various reviews, along with their professional
judgment, to determine their revisions. In some cases, the writers decided not to address, or only
minorly address, the suggested feedback. Those decisions and rationale are included below.

Overall Feedback Themes
Positive Feedback
In addition to providing constructive feedback, reviewers were asked to comment on the strengths of
the framework. The writers used positive feedback as a guide for helping them better understand
what was ideal in terms of structure, grain size, voice, and general writing style. Themes emerged
from the comments that pointed to the framework being well-developed, comprehensive, and a good
progression for K–12 learning. In review periods two and three, people wrote about how much the
framework had improved since the first review period, that added examples made the content easier
to understand, and that changes in language had made the document easier to understand. Review-
ers also felt that the framework covers the right concepts and practices and appreciated that it is
inclusive of much more than just “coding.” Other reviewers wrote about how much a document like
this is needed in computer science education and were excited about the effort overall. High percent-
ages of reviewers also indicated that they believed the framework would be useful in a variety of ways
(see Figure A.2).

Figure A.2: Survey responses on the importance of the framework

 Classroom Instruction 88%

 Advocacy for Computer Science 86%

 Teacher Training 87%

 Curriculum Development 94%

 Standards Development 99%

 Research into Computer Science Education 84%

0%

20%

40%

60%

80%

100%

PERCENTAGE OF REVIEWERS WHO BELIEVE THE FR AMEWORK IS USEFUL FOR. . .

234 K–12 Computer Science Framework

Appendix A: Feedback and Revisions

During review period three, reviewers were also asked to report on the overall usefulness of the
framework in terms of what it might inform. Reviewers were overwhelmingly positive about the
different potential uses of the framework.

Additionally, when asked about their overall impression of the framework, 92% of reviewers rated it as
excellent, very good, or good, showing that it was a highly favored document.

While there was positive feedback on the document throughout the process, reviewers also offered
extensive constructive feedback in the interest of continually improving upon the framework with
every revision cycle.

Constructive Feedback Overview
Reviewers also indicated several areas of concern that applied to both concepts and practices. These
areas of concern fell into three categories: mechanics and language, content, and usage.

• Mechanics and Language
 – Language too technical
 – Voice inconsistent
 – Content unclear
• Content
 – Content too broad
 – Content overlaps
 – Content missing
 – Content not essential for all learners
 – Renaming the core concepts and practices
• Usage
 – Audience unclear
 – Integration with and alignment to other disciplines not sufficient

The following sections describe each of these areas of concern and the writing team’s response.

Language Too Technical
In all three review periods, commenters critiqued various terms used in the framework. Many review-
ers wrote that the vocabulary was too technical and confusing, particularly for someone who is a
novice to computer science. Acronyms were occasionally used that were unknown to some reviewers.
There was also some confusion expressed about terms that have different meanings in computer
science than in other fields. Because the framework was intended for novices to computer science,
many reviewers questioned whether technical terminology was appropriate. Some reviewers felt that
the language was uninviting, and reviewers frequently asked for terms to be defined.

K–12 Computer Science Framework 235

Appendix A: Feedback and Revisions

On the other hand, some reviewers wanted to see computer science terms in the framework. Some
commenters with knowledge of computer science questioned why the writers seemed to be using
other words to avoid using a term, rather than simply using the term itself.

Response
The writers attempted to find a balance between using terms that are essential for understanding
computer science and removing all jargon, acronyms, or overly technical or advanced terms. The
writing team reviewed each technical term and removed any that were not necessary for understand-
ing the framework. Terms that were deemed essential to computer science were used in the frame-
work and were defined in a a Glossary (see Appendix C). The draft glossary was provided during the
second and third review periods.

The writers also considered reading level, and the development team tested the reading level of the
statements after the second and third revisions. The writers and an editor removed potentially confus-
ing language and used simple words whenever possible. Additionally, some of the more complex
computer science terminology was described or explained in a concept or practice statement.

Voice Inconsistent
In all three review periods, reviewers commented on the lack of a consistent voice for the framework
statements. The feedback ranged from very general (e.g., the overviews are written differently, some
concept statements read very differently from other concept statements) to very specific about lan-
guage choice (e.g., the subject of the statements as “groups,” “students,” or “people”; using “com-
puters” versus “computing devices”). One area of concern about the practice statements was that
some statements sounded like end of 12th grade goals but others sounded like general goal state-
ments that could apply across K–12.

Response
Throughout the process, the development team created and refined guidelines around writing style
and structure. An editor was brought onto the writing team to create a style guide for consistent
language choice and sentence structure. The editor also edited all concepts and practices prior to
each of the following review periods and prior to the final release.

Small writing teams addressed issues of consistent voice in concepts, practices, and overviews. For
each (concepts, practices, and overviews), a team of three writers and a member of the development
team made the language style and format consistent.

236 K–12 Computer Science Framework

Appendix A: Feedback and Revisions

The practices writing team clarified that all practice statements should reflect goals “by the end of
Grade 12,” and the team revised all of the statements to reflect this endpoint. The practices team also
revised the overviews to align in content and verb usage with the statements and progressions.

Content Unclear
Many comments from the reviews addressed clarity in the concept statements and practices. The
reviewers wanted more examples or explanation to make the statements clear. Some comments
conveyed that the reviewers were unsure about the intent of a statement, or they misinterpreted the
intent. Most of these comments were made about the statements in the K–2 and 3–5 grade bands.
Reviewers of the practices appreciated the examples, saying that the examples bring the practices to
life. Other practices were less clear, and reviewers asked for more examples.

Response
The writing team added depth to the statements and practices. Some drafts of the framework had
statements that were so concise that the intent was no longer clear. The writers added more descrip-
tion so that the topic of the statement was clear.

The K–5 concept statements in particular, while originally written to be approachable, received
feedback that students already know or are already learning these ideas. The writing team used this
feedback, along with the Lexile reading level scores for these statements, to expand on the computer
science ideas.

The practices writing team made many edits for clarification. For example, in response to feedback
about the complexity and lack of clarity around abstraction, the writers attempted to strike a balance
between the needs of a novice reader and the needs of an expert reader. The writers clarified the
definition of abstraction and extended the examples to contextualize the practice of abstraction.

The concept and practices writing teams added examples and clarification into the descriptive materi-
al for each concept and into the progressions for the practice statements. They also chose to include
only the most salient and specific examples and to describe how each example reflected the concept
or practice statement.

Content Too Broad
Reviewers noted that several subconcepts and concept statements were very broad and included
many different ideas. Reviewers who had experience writing standards were concerned that the
concept and practice statements would not translate well to standards. Other comments said that the
phrasing was confusing and that more clarity was needed to understand the intent of each statement.

Response
The writing team narrowed the focus of each concept and practice statement and prioritized the key
topics and ideas. Each statement was revised to focus on simpler and fewer ideas. For example, in the

K–12 Computer Science Framework 237

Appendix A: Feedback and Revisions

Algorithms and Programming core concept, program development originally contained many differ-
ent topics but eventually became focused on the iterative process of designing, implementing, and
reviewing programs, including taking into account diverse users and diverse teams. Another example
is in the Computing Systems core concept, in which a subconcept focused on system software or
operating systems was combined with the hardware and software subconcept.

Content Overlaps
Some reviewers identified areas of overlap between subconcepts or between practice statements. For
example, many reviewers identified areas of overlap between the practices Fostering an Inclusive
Computing Culture and Collaborating Around Computing or between the practice Creating Compu-
tational Artifacts and multiple other practices.

Response
The writing team carefully reviewed the specific feedback about areas of overlap and attempted to
minimize this overlap.

Some ideas were removed entirely from one core concept or practice and left in another. When a
topic was left in multiple sections, an effort was made to ensure that only the specific aspect of the
topic addressed in the concept or practice was incorporated. For example, in response to feedback
about data representation appearing in both the Data and Analysis and the Algorithms and Program-
ming core concepts, the overlapping ideas were retained in Data and Analysis concept statements,
and the Algorithms and Programming statements were reframed to focus on variables and data types.

The practices team used the specific reviewer feedback to more clearly distinguish between the
practices. For example, phrasing that focused on collaborating in teams was removed from Fostering
an Inclusive Computing Culture to more clearly delineate its boundary with Collaborating Around
Computing.

On the other hand, some of the overlap was deemed necessary by the writing team. For example,
some topics that were deemed essential to multiple concepts, like human–computer interaction and
privacy and security, became crosscutting concepts. For the practices, some terms and ideas from
Fostering an Inclusive Computing Culture were intentionally left in other practices; this overlap was
deliberate to emphasize the importance of diversity throughout the practices. Similarly, the writing
team received conflicting feedback about Creating Computational Artifacts and the other practices:
reviewers thought this practice was essential but were concerned about the overlap with the other
practices. The writers attempted to minimize the overlap by focusing this practice on the purpose of
modifying an artifact.

238 K–12 Computer Science Framework

Appendix A: Feedback and Revisions

Content Missing
Some reviewers suggested content that was not yet included in the framework concepts and practices.

Response
The framework writers responded to these suggestions in several different ways.

In some cases, when content did not appear in the statements yet, the writers agreed with the review-
ers. For example, based on feedback to include cybersecurity, the writing team enlisted advice from
the National Initiative for Cybersecurity Education and the Cyber Innovation Center about the core
ideas of cybersecurity education and created a cybersecurity subconcept. Other examples include
cyberbullying, computer science components of digital citizenship, careers in computer science, and
bits. In other cases, reviewers wanted to see a greater focus on specific topics. For example, based on
feedback, the writers broadened the focus of systems in the Computing Systems core concept and
decided to include modeling in the practice Developing and Using Abstractions to convey how to
interact with models and simulations and how to be able to contribute to part of the process of
making one.

Another suggestion from reviewers was ensuring that the statement did not restrict or limit the
content that could be taught. For example, some reviewers believed that the references to object-
oriented programming and order of presentation in Algorithms and Programming statements
removed functional programming as a possible paradigm at the middle school and high school levels.
The writers revised the statements to allow functional programming to be used. In the descriptive
material, the writers provided examples that were described as “possible” ways to do things rather
than the expected ways to do something.

Other suggestions were considered, but ultimately the writers decided that the suggested content
went beyond the computer science that all learners should know. For example, reviewers suggested
including in the practice statements ideas such as intelligent machines and computer graphics,
analyzing artifacts made by others, and contributing back to code communities. The writing team
determined either that not all students should be required to do these or that some of the ideas were
outside the scope of the practices and would necessitate overly technical language.

Content Not Essential for All Learners
Some reviews flagged particular concept or practice statements as not being essential for all students
to learn or not being core and central to computer science. Other reviews flagged particular state-
ments as being too advanced for a high school class.

K–12 Computer Science Framework 239

Appendix A: Feedback and Revisions

Response
Over the course of the three drafts, the number of concept statements was drastically reduced.
Writers with expertise in each grade band reviewed all of the concept statements for that grade band
for whether each statement was (1) essential for all students and (2) developmentally appropriate for
the given grade band.

The writing team reconsidered all statements, with a focus on those flagged by the reviewers. Be-
cause the framework describes concepts and practices for all students, the writers removed content
that would be taught in a specialized high school course. The writers also questioned whether each
statement was of equal importance and deleted parts of statements that were deemed nonessential
for all students. For example, the writers removed ideas in the Algorithms and Programming core
concept that reviewers said were not necessary for all students to learn in high school, such as recur-
sion and object-oriented programming, and made these ideas optional. In the practices, the writers
carefully considered the extent to which modeling was included.

Renaming the Core Concepts and Practices
Some reviewers were concerned about the message sent by the names of the core concepts, subcon-
cepts, and practices. They agreed with the division of the five core concepts, for example, but were
critical of the naming as being too technical or not representing the power of computer science.

Response
The writers consulted with the advisors and referred to specific feedback to modify the names of the
core concepts, practices, and subconcepts. The writers made thoughtful and precise edits to these
names for clarity and to emphasize the powerful computer science ideas that each encompassed. For
example, Networks and Communication became Networks and the Internet, Data and Information
became Data and Analysis, and Testing and Iteratively Refining became Testing and Refining
Computational Artifacts. For subconcepts, an illustrative example is in the Impacts of Computing core
concept. After early feedback about the subconcepts, the writing team restructured the subconcepts
into more natural groupings and changed names to be more reader-friendly and clear.

Audience Unclear
Several commenters in the first review period wanted clarification about the audience for the frame-
work. Other commenters reviewed the framework under an incorrect assumption about the audience,
such as thinking that the framework was written for students. Reviewers of the practices, on the other
hand, commented that computer scientists would not engage in some of the practices.

Response
The intended audience for the framework was added to the preface for the following drafts and
included in the introductory chapters of the final draft (see A Vision for K–12 Computer Science for
a full description of the intended audience). The writers also kept the audience in mind while they

240 K–12 Computer Science Framework

Appendix A: Feedback and Revisions

wrote, with the understanding that some readers may not have a background in computer science,
which influenced language revisions.

The practices writing team clarified the audience and intent of the practices in the Preface of the
Practices chapter Although the practices are written for a professional adult audience, the practices
themselves are aimed at all students. Thus, although a computer scientist may not engage in the
practice, all students, regardless of future profession, should be able to engage in the practices.

Integration with and Alignment to Other Disciplines Not Sufficient
In all three review periods, reviewers wanted to see explicit connections to other disciplines. Com-
ments on the practices indicated that reviewers wanted to see more connections with practices in
science, engineering, literacy, and mathematics. On the other hand, reviewers also mentioned that
some of the framework content was already taught in other disciplines.

Response
The writers attempted to include interdisciplinary connections for each concept statement or concept
area but realized that this was beyond the scope of the framework and the expertise of the writers.
Interdisciplinary connections and teaching computer science integrated into other content areas is
broadly addressed in the Implementation Guidance chapter. Supplemental materials to the frame-
work related to interdisciplinary connections could be released in the future or could be created at the
level of standards or curriculum.

The writers also reviewed the statements that were tagged by comments as being similar to content
taught in other subjects. Although overlap with other content was assumed by the writers to be
desirable (and could aid in integration), the writers decided to focus each statement on the computer
science content. The writers revised the statements to emphasize the computer science aspect of the
statement. For example, the writing team modified the K–2 statements in the Data and Analysis core
concept to focus on digital tool and automated collection, differentiating the content from data in
mathematics.

The practices were revised to focus more specifically on the computer science context of each prac-
tice, rather than more general 21st century skills. However, there is some natural overlap in how the
computational thinking practices align with engineering design practices or mathematical practices.
The Practices chapter includes a diagram (Figure 5.2) showing some of these potential connections.

K–12 Computer Science Framework 241

Appendix A: Feedback and Revisions

Major Themes for Concepts Only
Some of the feedback from reviewers applied only to the concepts. Major themes from these com-
ments were

• crosscutting concepts needed to be revised, and
• subconcept progressions were not consistent.

Crosscutting Concepts Needed to be Revised
Feedback from the first review period requested the inclusion of crosscutting concepts. After this list
was presented in the next review, feedback suggested that the list be revised.

Response
Although crosscutting concepts were a writing tool from the start of the project, the list was not
presented during the first public review. After receiving feedback requesting crosscutting concepts,
the draft list was shared during the next public review. From this draft list, however, some of the
original crosscutting concepts eventually seemed to fit better in a single core concept, whereas some
ideas originally placed in a single core concept were determined to be applicable to multiple core
concepts, suggesting that they were crosscutting. For example, Human–Computer Interaction was
originally a subconcept in Impacts of Computing but became a crosscutting concept due to overlap
with other concept areas. Ethics and Security was originally a crosscutting concept but eventually
ethics was incorporated into Impacts of Computing, and the crosscutting concept became Privacy and
Security.

After the second review period, a small team of advisors and writers carefully read the draft state-
ments, the feedback from the review, and relevant literature to identify the final list of crosscutting
concepts. The full list is included in the preface of the Concepts chapter.

Subconcept Progressions Were Not Consistent
During the second and third review periods, reviewers commented on the “jumps”—or increases in
sophistication and content—from one grade-band endpoint to the next within a progression. Some of
the comments were that the jumps were too big, or too small, for the specified subconcept or that the
jumps were inconsistently sized across the framework. Some reviewers wrote that the content in a
particular grade-band is not essential as part of the progression and that this combined with a small
jump did not warrant the inclusion of the concept statement.

Response
After the second and third review periods, the writers closely examined the progressions across the
grade bands and wrote subconcept overviews to describe the progression. When necessary, the
writers inserted language to ensure that there was a fluid transition between the different grade bands
and that there was not too much added at each jump. For example, reviewers wanted to see pro-

242 K–12 Computer Science Framework

Appendix A: Feedback and Revisions

gramming as an expectation in the K–2 grade band and the removal of functional programming from
the 3–5 grade band, changing these K–5 progressions in the Algorithms and Programming subcon-
cepts. In some cases, writers considered starting some subconcept progressions at the 3–5 grade
band, or ending a progression at the 6–8 grade band, but eventually all progressions spanned K–12 in
the final draft.

Some subconcepts with smaller jumps were condensed or combined to produce fewer concepts
overall. For example, three subconcepts within Networks and the Internet were combined into a
single subconcept with greater jumps in the progression.

Major Themes for Practices Only
Some of the feedback from reviewers applied only to the practices. Major themes from these
comments were

• computational thinking was not emphasized enough,
• there was confusion about practices written in progressions rather than grade bands, and
• practices were too narrowly focused on programming.

Computational Thinking Was Not Emphasized Enough
In the first review, many reviewers asked why computational thinking was not included. Computational
thinking was not explicitly called out in the practices, and many reviewers believed that it was import-
ant to include the words.

Response
The practices writing team wrote a section of the Practices chapter that explained why computational
thinking was not a practice. Instead, they included four practices that they specifically called out as
computational thinking practices. Within these practices, ideas core to computational thinking were
included, such as decomposition and abstraction. The writing team and development team frequently
revisited the way that computational thinking was included in the practices.

There Was Confusion About Practices Written in Progressions Rather Than
Grade Bands
During the second and third reviews, reviewers expressed confusion about the way that the practices
were written differently than the concepts. During the second review period, reviewers were confused
by the language of the progressions because they appeared to be written for grade bands. Reviewers
were also concerned that the practices might be ignored if the reader could not easily apply the
practices. Some reviewers wanted consistency between concepts and practices and expressed a
preference for grade bands. On the other hand, many other reviewers, including some who had
experience writing standards, were opposed to grade bands for the practices and encouraged the use
of progressions.

K–12 Computer Science Framework 243

Appendix A: Feedback and Revisions

Response
In attempting to make the practices as usable as possible, the writing team wrote the progressions in
the format that could be most useful to standards writers and practitioners. The writing team took the
position that the narrative structure provides flexibility and attempting to write the practices into
grade bands would create artificial benchmarks. In response to critical feedback, the progressions
were reworked to make them grade level independent and to alleviate confusion about the phrasing
and language. Progressions included a starting point and an ending point but did not include grade
bands. The writers also aligned each progression with the corresponding practice statement and
chose specific verbs to better reflect what is actually done in the practice.

Practices Were Too Narrowly Focused on Programming
During the first review period, reviewers said that the practices were too narrowly focused on
programming. Many of the examples included in the practices were specific to programming and did
not help the reader make connections between the practices and other core concepts.

Response
The intent of the practices is that each practice could be combined with concept statements in all five
core concepts, so the writing team attempted to make this clear with the language and examples in
the practices. The writing team reworked examples in multiple practices to make sure that examples
aided connection to core concepts and elements of computer science besides programming. In
particular, Communicating About Computing and Creating Computational Artifacts were revised
based on feedback to focus on multiple aspects of computer science.

244 K–12 Computer Science Framework

Appendix A: Feedback and Revisions

Organizations That Convened Reviews

• AccessCS10K

• Achieve

• Association of State Supervisors of
Mathematics

• California Department of Education

• Center for Applied Special Technology (CAST)

• Center for Elementary Math and Science
Education, University of Chicago

• Change the Equation

• Chicago Public Schools, IL

• Code.org

• CodeCombat

• Codesters

• CodeVA

• Computing At School, United Kingdom

• Capital Region Academies for the Next
Economy

• CS Teachers Ann Arbor Public Schools

• Computer Science Teachers Association,
New Hampshire

• Computer Science Teachers Association,
Delaware

• Computer Science Teachers Association,
Minnesota

• CSNYC

• Cyber Innovation Center

• Deer Valley Unified School District, Computer
Science Education Committee

• Expanding Computing Education Pathways,
Maryland

• Gesellschaft für Informatik e.V., Germany

• Google Inc.

• Green Bay Area Public Schools, WI

• International Association of Privacy
Professionals

• Indiana Department of Education

• Johnston County Schools, North Carolina

• Maine Mathematics and Science Alliance

• Maryland State Department of Education

• Massachusetts Computing Attainment
Network

• Massachusetts Department of Education

• Microsoft Corporation

• Minnetonka Public Schools, MN

• Mississippi Department of Education

• Museum of Science, Boston

• New Jersey Department of Education

• National Initiative for Cybersecurity Education

• North Carolina Business and Industry—
Programming and Engineers

• North Carolina Career and Technical
Education Directors

• North Carolina Department of Public
Instruction

• Nevada Computer Science Team

• New York City Department of Education, NY

• Ohio Review Team

• Oracle Academy

• Pacific Northwest National Laboratory (PNNL)

• Project Lead The Way

• San Francisco Unified School District
(SFUSD), CA

• SRI, Center for Technology in Learning

• Washington Computer Science Learning
Standards Advisory Committee

• Washington State Leadership and Assistance
for Science Education Reform

• Washington State

• Washington STEM

K–12 Computer Science Framework 245

Appendix B: Biographies of Writers and
Development Staff

Writers
Julie Alano
Computer Science Teacher, Hamilton Southeastern High School
Fishers, Indiana

Julie Alano teaches computer science at Hamilton Southeastern High School.
She has expanded the computer science program since starting there as a
math teacher in August 1998. The school now offers four levels of computer
science, and she is working to include computer science in the K–8 curriculum.
With a master’s degree in educational technology, Julie also started a

student-led tech squad in the school. In May 2016, Julie was named the Hamilton Southeastern
Schools District Teacher of the Year. Julie serves as president of the Hoosier Heartland Chapter of the
Computer Science Teachers Association (CSTA) after helping to start the group. She is also a member
of the CSTA Computer Science Advocacy Leadership Team and a Code.org Computer Science
Principles Facilitator.

Derek Babb
Computer Science Teacher, Omaha North Magnet High School
Omaha, Nebraska

Derek Babb is a computer science teacher at Omaha North Magnet High
School. He has taught computer science for 11 years in both suburban and
urban high school settings. In addition to writing for the K–12 Computer
Science Framework, he has been involved in writing computer science
standards for the state of Nebraska as well as local school districts. He has

been involved in computer science advocacy at the local level, serving as a founding member and
president of the Omaha Computer Science Teachers Association chapter. Derek is committed to
expanding computer science education in his school and district and hopes to serve as a coach and
advisor to new computer science teachers as they get started.

246 K–12 Computer Science Framework

Appendix B: Biographies of Writers and Development Staff

Julia Bell
Associate Professor of Computer Science, Walters State Community College
Morristown, Tennessee

Julia Bell is an associate professor of computer science at Walters State
Community College. She previously worked with Northwest Arkansas
Community College in Bentonville, AR. She has worked as a networking
program director and systems analyst for Fayetteville Police Department, TN
Code Academy programming instructor, tnAchieves scholars mentor, Quality

Matters certified designer and course reviewer, and A.C.E.-certified forensic examiner. She received the
2012 Faculty of the Year award and multiple Good as Gold Faculty awards from Phi Theta Kappa. For
two years she has worked with Nicewonger Foundation Summer Coding Camp teaching coding and
networking to middle and high school students, as a writer for the Interim CSTA K–12 Computer Science
Standards, Revised 2016, and as a Nicewonger Foundation mobile presenter. Julia’s research interests
include cybersecurity, cybersecurity impacts on children, and NSX networks of the future.

Tiara Booker-Dwyer
Education Program Specialist, Maryland State Department of Education
Baltimore, Maryland

Tiara Booker-Dwyer is an education program specialist for the Maryland State
Department of Education (MSDE). In this position, she provides leadership to
local school systems and postsecondary institutions to plan, develop, and
implement computer science, engineering, and technology education
instructional programs. She develops, coordinates, and facilities professional

learning experiences and assists in departmental initiatives related to school reform and science,
technology, engineering, and math education. Prior to joining MSDE, Tiara was a program director for
the Maryland Business Roundtable, where she developed strategic alliances and led stakeholder
groups in the implementation of programs designed to prepare students for future job markets. Tiara
began her career conducting research in neuroscience at Johns Hopkins before transitioning into
education, where she is collaboratively leading efforts to implement high-quality computer science
learning experiences statewide.

K–12 Computer Science Framework 247

Appendix B: Biographies of Writers and Development Staff

Leigh Ann DeLyser
Director of Education and Research, CSNYC
New York, New York

Leigh Ann DeLyser is the director of education and research at the NYC
Foundation for Computer Science Education (CSNYC). In this role, Leigh Ann
is working to expand computer science to all schools in the New York City
public school system. CSNYC is the private partner in the $80 million initiative
requiring every school to offer one unit of computer science to every student

in public schools. She is a co-author of the Running on Empty report, a 50-state analysis of computer
science standards. Prior to obtaining her doctorate in computer science and cognitive psychology
from Carnegie Mellon University, Leigh Ann was a high school computer science and math teacher
and a two-term member of the board of directors of the Computer Science Teachers Association. She
also helped start the Academies for Software Engineering in New York City as a proof of concept that
all students could learn computer science.

Caitlin McMunn Dooley
Deputy Superintendent for Curriculum and Instruction,
Georgia Department of Education
Associate Professor, Georgia State University
Atlanta, Georgia

Caitlin McMunn Dooley is the deputy superintendent for curriculum and
instruction for Georgia’s public schools and an associate professor at Georgia
State University. Her research on children’s and teachers’ learning, digital

literacy development, and computational thinking has been published in more than 50 articles,
chapters, and editorials. Caitlin’s latest National Science Foundation-funded project studies how to
integrate computer science across the curriculum in Grades 3–5. Caitlin promotes the integration of
computer science as an essential part of K–12 academic learning and of digital literacy development.
Caitlin taught early childhood and elementary grades in Virginia before becoming a teacher educator,
professor, mother, researcher, and school leader.

248 K–12 Computer Science Framework

Appendix B: Biographies of Writers and Development Staff

Diana Franklin
Director of Computer Science Education, UChicago STEM Ed
Chicago, Illinois

Diana Franklin is the director of computer science education at UChicago
STEM Ed. She has taught college-level computing for 14 years as tenured
teaching faculty at University of California, Santa Barbara and as an associate
professor at California Polytechnic State University, San Luis Obispo. Her
research focuses on understanding how children learn computing concepts in

elementary school to design learning environments and curricula. She is a recipient of the National
Science Foundation CAREER award, the National Center for Women & Information Technology faculty
mentoring award, and three teaching awards. She is the author of A Practical Guide to Gender
Diversity for CS Faculty, from Morgan Claypool.

Dan Frost
Senior Lecturer, University of California, Irvine
Irvine, California

Dan Frost has maintained a strong interest in K–12 computer science education
during the two decades he has taught computer science at the university level.
His 1997 SIGCSE (Special Interest Group on Computer Science Education)
paper Fourth Grade Computer Science, based on many years of in-classroom
teaching and research, contributed to the recent upswing in computer science

education at the primary and secondary levels. From 1997 to 1999, Dan chaired the Computer Science
Teachers Association committee that wrote A Model Curriculum for K–12 Computer Science: Level 1
Objectives and Outlines. He was the principal investigator on an National Science Foundation grant that
intertwined computer science, game design, and cultural education for American Indian high school
students, who created games that retold traditional stories and cultural practices.

Mark A. Gruwell
Co-Facilitator, Iowa STEM Council Computer Science Workgroup
Estherville, Iowa

Mark A. Gruwell co-facilitates the Iowa STEM Council Computer Science
Workgroup, which advocates and promotes K–12 computer science educa-
tion initiatives in Iowa. Mark started computer programming in high school
and continued programming in college, where he achieved recognition from
the Florida Bandmasters Association for creating BandBase, an application

that automates scheduling and other processes for district and statewide music festivals. While serving
as chief academic officer of Iowa Lakes Community College, Mark led efforts to create and implement

K–12 Computer Science Framework 249

Appendix B: Biographies of Writers and Development Staff

the college’s two-year Computer Gaming Design & Development Program. In addition to teaching
summer computer camps, Mark is an entrepreneur who designs computer applications that assist
colleges with student advising, adjunct faculty scheduling and credentialing, and accreditation.

Maya Israel
Assistant Professor, University of Illinois at Urbana Champaign
Champaign, Illinois

Maya Israel is an assistant professor in the College of Education at the
University of Illinois at Urbana Champaign. Her primary areas of specialization
include supporting students with disabilities and other struggling learners’
meaningful engagement in science, technology, engineering, and math
(STEM), with emphases on computational thinking and computer program-

ming. She researches accessible instructional models and technologies that promote student
engagement, collaborative problem solving, and persistence. Maya is currently a co-principal
investigator on a National Science Foundation STEM+C grant to create learning trajectories that
align computational thinking with math instruction. She has published in top-ranking journals such as
Exceptional Children, Journal of Research on Technology in Education, Journal of Research in Science
Teaching, and Computers & Education.

Vanessa Jones
Instructional Technology Design Coach, Austin Independent School District
Austin, Texas

Vanessa Jones is an instructional technology design coach for the Austin
Independent School District. She is a Code.org Texas facilitator and has
trained hundreds of educators in computer science basics. She was named
one of Intel’s Education 20 Most Inspiring Educators and has presented at

numerous national and state conferences, such as the International Society for Technology in
Education, showcasing computer science initiatives. Vanessa has written several grants to enrich
computer science infusion in the elementary and middle school classroom. She is a member of the
CS4TX (Computer Science for Texas) organization, and her passion is to continue to develop a com-
munity of computer science learners to learn something new every day. She believes that all students
should have access to understand the basics in computer science and that computer science is the
great equity equalizer.

250 K–12 Computer Science Framework

Appendix B: Biographies of Writers and Development Staff

Richard Kick
Mathematics and Computer Science Teacher, Newbury Park High School
Newbury Park, California

Richard Kick teaches math and computer science at Newbury Park High
School. Rich earned a mathematics education degree from the University of
Illinois at Urbana Champaign and a master’s degree in mathematics from
Chicago State University. He taught Advanced Placement® (AP) computer

science using Pascal beginning in the first year of AP computer science, followed by C++ and then
Java. After working as a C++ programmer at Fermi National Accelerator Laboratory, Rich served as a
College Board exam reader, table leader, question leader, and Computer Science Test Development
Committee member. He is a five-time Computer Science Principles Pilot instructor and is currently the
co-chair of the Computer Science Principles Development Committee.

Heather Lageman
Executive Director of Leadership Development, Baltimore County Public
Schools
Towson, Maryland

Heather Lageman serves as the executive director of leadership development
for Baltimore County Public Schools in the Office of Organizational Develop-
ment. She is president of the Learning Forward Maryland Affiliate, presi-
dent-elect of the Learning Forward Foundation, and vice president of Mary-

land Affiliate of the Association for Supervision and Curriculum Development. Heather has served as
the director of curriculum for the Maryland State Department of Education (MSDE), and she managed
the statewide implementation of the Maryland Teacher Induction Program. During Race to the Top,
she served as Race to the Top local education agency director for Maryland and managed both
programmatic and fiscal aspects of the district projects. Heather formerly served as an MSDE special-
ist managing No Child Left Behind Title IIA and providing leadership for the state teacher professional
development programs and policies, as well as the professional development coordinators. Prior to
that, she served as a specialist in MSDE’s Secondary English Language Arts Office, where her respon-
sibilities included development and implementation of county curriculum, assessments, and profes-
sional development. Heather is dedicated to supporting the professional learning and development
of inspired and innovative educators.

K–12 Computer Science Framework 251

Appendix B: Biographies of Writers and Development Staff

Todd Lash
Doctoral Student/Contributing Member, University of Illinois Doctoral Student/
CSTA K–8 Task Force
Champaign, Illinois

Todd Lash is an elementary educator of 17 years. Having enjoyed time as a
classroom teacher and school library media specialist over the last three years,
Todd worked as an instructional coach for computer science. Currently a
first-year doctoral student at the University of Illinois, Todd served on the team

for the Interim CSTA K–12 Computer Science Standards, Revised 2016 and is active in the Computer
Science Teachers Association (CSTA) K–8 Task Force. As part of a National Science Foundation
STEM+C grant, Todd is part of a team working to develop computer science learning trajectories
through an integrated math curriculum.

Irene Lee
Researcher, Massachusetts Institute of Technology
Cambridge, Massachusetts

Irene Lee is a researcher in the Massachusetts Institute of Technology’s Schell-
er Teacher Education Program and Education Arcade. She is the founder and
director of Project GUTS: Growing Up Thinking Scientifically and previously
was the principal investigator of New Mexico Computer Science for All, Young
Women Growing Up Thinking Computationally, and GUTS y Girls. Irene is the

chair of the Computer Science Teachers Association (CSTA) Computational Thinking Task Force and
served as a member of the team for the Interim CSTA K–12 Computer Science Standards, Revised
2016. Previously, she designed and developed educational and video games for Electronic Arts and
Theatrix Interactive and worked in informal education as a science specialist. Irene is the past presi-
dent of the Supercomputing Challenge and the Swarm Development Group and the past director of
the Learning Lab at Santa Fe Institute.

Carl Lyman
Specialist over Information Technology Class Cluster, Utah State Board of
Education
Salt Lake City, Utah

Carl Lyman started teaching programming to his third grade students in 1982.
He brought his Apple II+ computer from home to school each day. He taught
problem solving and programming to his students using Turtle Graphics and
Terrapin Logo. His students learned problem solving, loops, if-then state-

ments, and procedures. Today it is called “coding.” Carl spent more than 30 years as a teacher—six

252 K–12 Computer Science Framework

Appendix B: Biographies of Writers and Development Staff

years as an elementary teacher and more than 27 years teaching computer classes, computer applica-
tions, programming, digital media, and information technology support classes. For 10 years, he
worked at the Utah State Board of Education in career and technical education, overseeing informa-
tion technology (which includes computer science), digital media, web development, and computer
programming courses. He worked hard in Utah to train teachers to teach computer science and make
more computer science opportunities available for students. Carl has recently retired.

Daniel Moix
Computer Science Education Specialist, Arkansas School for Mathematics,
Sciences & Arts
Hot Springs, Arkansas

Daniel Moix has taught computer science since 2003 at the Arkansas School
for Mathematics, Sciences & Arts; College of the Ouachitas; and Bryant High
School. He is the Computer Science Teachers Association (CSTA) Arkansas
vice president, a member of the CSTA Computer Science Advocacy Leader-

ship Team, and Arkansas’s first K–12 computer science education specialist. Daniel was the 9–12
grade-level lead for the Interim CSTA K–12 Computer Science Standards, Revised 2016 and a recipi-
ent of the 2015 Presidential Award for Excellence in Mathematics and Science Teaching.

Dianne O’Grady-Cunniff
Computer Science Teacher, La Plata High School
La Plata, Maryland

Dianne O’Grady-Cunniff is working on projects to bring computer science to
all students in K–12, after teaching computer science in university, college, and
high school. Focusing on curriculum development and teacher training and
support for the past few years, she is a lead teacher for the CS Matters in
Maryland team and a Code.org facilitator. She worked with Charles County

Public Schools to train hundreds of teachers to teach computer science and bring computer science
to every school in the district for the past two years. Computer science education is Dianne’s passion,
and she believes that every child should have the opportunity to create with technology.

K–12 Computer Science Framework 253

Appendix B: Biographies of Writers and Development Staff

Anthony A. Owen
Coordinator of Computer Science, Arkansas Department of Education
Little Rock, Arkansas

Anthony A. Owen serves as Arkansas’s coordinator of computer science within
the Arkansas Department of Education (ADE). He began his career in educa-
tion as a math and science teacher and then served as ADE’s K–12 mathemat-
ics and computer science specialist. Anthony currently serves as the state lead
for the development and implementation of Gov. Asa Hutchinson’s computer

science initiative. In this role, he advises and coordinates with multiple national and state entities,
including serving as a member of the Southern Regional Education Board’s Commission on Computer
Science, Information Technology and Related Career Fields, as well as Gov. Hutchinson’s Computer
Science Task Force, which identifies the state’s computer science and technology needs. Anthony was
recently elected as the state department representative to the Computer Science Teachers Associa-
tion. Anthony received a bachelor of science degree in mathematics with minors in education and
computer science and a master’s degree in educational leadership from Henderson State University.
He received a juris doctorate from the Bowen School of Law at the University of Arkansas at Little Rock
in 2013 and was admitted to the Arkansas bar in 2014.

Minsoo Park
Director of Teaching and Learning, Countryside School
Champaign, Illinois

Minsoo Park is the director of teaching and learning at Countryside School. In
10 years of teaching, he has primarily served as a middle school computer
science/algebra teacher, a technology coordinator, and an Middle Years
Program International Baccalaureate coordinator in Chicago Public Schools.
For past three years, he served as an enrichment and technology specialist in

Unit 4 Champaign School District, implemented student-driven projects, and developed schoolwide
computer science and math integration units that emphasize the metacognition and learning process
through computer science concepts and computational thinking practices. He has been recognized
with the Those Who Excel Award by the Illinois State Board of Education for technology innovation.
He is certified in computer science, math, social science, physical science, and technology education.

254 K–12 Computer Science Framework

Appendix B: Biographies of Writers and Development Staff

Shaileen Crawford Pokress
Visiting Scholar, Wyss Institute at Harvard; K–12 Curriculum Designer
Cambridge, Massachusetts

Shay Pokress is a curriculum developer specializing in K–12 computer science.
Shay is currently a visiting scholar at Harvard’s Wyss Institute for Bioinspired
Engineering, where she is developing standards-based computer science
curricula around the unique capabilities of Root, a robot designed specifically
for learning computational thinking. Prior to joining the Root team, Shay

served as director of instruction at Project Lead The Way, where she developed Advanced Place-
ment® computer science courses and was the lead writer for Launch Computer Science, a widely
adopted curriculum that uses an infusion approach to connect problem-based computer science to
K–5 content standards. At the Massachusetts Institute of Technology Media Lab, she developed and
directed the education program for App Inventor, a platform for building mobile apps that aims to
democratize mobile computing. As senior research associate at TERC, Shay focused on teacher
professional development in mathematics and science. Shay earned her bachelor of science degree in
computer science from Cornell University and her master’s degree from Harvard Graduate School of
Education. She believes that access to quality computer science education is a social justice issue.

George Reese
Director of MSTE, MSTE Office at University of Illinois at Urbana Champaign
Champaign, Illinois

George Reese is the director of the Office for Mathematics, Science, and
Technology Education (MSTE) in the College of Education at the University of
Illinois at Urbana Champaign. The MSTE office works to enhance technolo-
gy-supported teaching and learning in mathematics and science through
curriculum design and teacher professional development partnerships with

schools and districts. Prior to working at MSTE, George was a high school mathematics teacher at the
Santa Fe Indian School in Santa Fe, NM. He is currently the board president of the Illinois Council of
Teachers of Mathematics.

K–12 Computer Science Framework 255

Appendix B: Biographies of Writers and Development Staff

Hal Speed
Founder, CS4TX
Austin, Texas

Hal Speed is an advocate for computer science education for all students in
grades K–12 and believes these skills are necessary for socioeconomic mobili-
ty and the future prosperity of nations in the digital age. He founded CS4TX
(Computer Science for Texas) to coordinate activities across Texas and repre-
sent the state in the national CSforAll initiative and the Expanding Computing

Education Pathways Alliance. Hal is a product experience engineer at Dell and serves as a Code.org
facilitator, Computer Science Teachers Association committee chair, and Texas Computer Education
Association Tech-Apps/Computer Science Special Interest Group vice president. He holds a bachelor’s
degree in electrical engineering and a master’s degree in business administration from Virginia Tech.

Alfred Thompson
Computer Science Teacher, Bishop Guertin High School
Nashua, New Hampshire

Alfred Thompson is a high school computer science teacher at Bishop Guertin
High School and is a member of the Computer Science Teachers Association
board. He has been a professional software developer, a textbook author, a
developer evangelist, a school technology coordinator, a school board mem-
ber, and more. Alfred sees himself as a computer science education activist

working to help reach more young people with the knowledge that they can make the world a better
place through software. He is the author of the popular Computer Science Teacher blog.

Bryan Twarek
Computer Science Program Administrator, San Francisco Unified School
District
San Francisco, California

Bryan Twarek (BT) is the computer science program administrator for the San
Francisco Unified School District (SFUSD), where he is working to expand
computer science instruction to all students and all schools within San Francis-
co public schools. His goal is to ensure that all SFUSD students have equitable

access to rigorous and engaging computer science instruction, from prekindergarten to 12th grade.
To this end, he oversees policy, curriculum development, and professional development. He is also a
writer for the Interim CSTA K–12 Computer Science Standards, Revised 2016 and a board member for
Computer Using Educators San Francisco (an affiliate of the International Society for Technology in
Education). Previously, he has worked as dean, teacher, instructional coach, and technology integra-

256 K–12 Computer Science Framework

Appendix B: Biographies of Writers and Development Staff

tion specialist. BT graduated from Yale University with a degree in psychology and human neurosci-
ence. He earned his master’s degree in urban education policy and administration from Loyola Mary-
mount University.

A. Nicki Washington
Associate Professor, Computer Science, Winthrop University
Rock Hill, South Carolina

Nicki Washington is an associate professor of computer science at Winthrop
University. Prior to this, she was an associate professor at Howard University.
Her research interests focus on computer science education, specifically
increasing the participation of underrepresented minorities. Her research
projects have included partnerships with District of Columbia Public Schools,

Exploring CS, and Google. Her most recent research includes the development of the Computer
Science Attitude and Identity Survey, a tool for measuring the impact of ethnic identity on student
attitudes toward and pursuit and persistence in computer science. She is a 2000 graduate of Johnson
C. Smith University.

David Weintrop
Postdoctoral Researcher, UChicago STEM Ed
Chicago, Illinois

David Weintrop is a postdoctoral researcher at UChicago STEM Ed at the
University of Chicago. He has a doctorate in learning sciences from Northwest-
ern University and a bachelor of science degree in computer science from the
University of Michigan. Before starting his academic career, he spent five years
working as a developer at a pair of software startups in Chicago. David’s

research focuses on the design, implementation, and evaluation of accessible and engaging introduc-
tory programming environments. He is also interested in the use of technological tools in supporting
exploration and expression across diverse contexts including science, technology, engineering, and
math classrooms and informal spaces. His work lies at the intersection of human-computer interaction,
design, and learning sciences. David won the gold medal in the Student Research Competition at the
2015 ACM Computer Science Education conference for his dissertation work and has presented his
research at Google, the Massachusetts Institute of Technology, and conferences around the world.

K–12 Computer Science Framework 257

Appendix B: Biographies of Writers and Development Staff

Development Staff
Pat Yongpradit
Chief Academic Officer, Code.org

Pat Yongpradit is the chief academic officer for Code.org, a nonprofit dedicated to promoting com-
puter science education. As a national voice on K–12 computer science education, his passion is to
bring computer science opportunities to every school and student in the United States. Throughout
his career as a high school computer science teacher, he inspired students to create mobile games
and apps for social causes and implemented initiatives to broaden participation in computer science
among underrepresented groups. He has been featured in the book American Teacher: Heroes in the
Classroom and in 2010 was recognized as a Microsoft Worldwide Innovative Educator. He hold a
bachelor’s degree in neurobiology, a master’s degree in secondary education, and is certified in
biology, physics, math, health, and technology education. While Pat currently spends more time
focused on computer science from a national perspective, his heart is still in the classroom.

Katie Hendrickson
Advocacy and Policy Manager, Code.org

Katie Hendrickson is an advocacy and policy manager at Code.org. She works on state policy and
advocacy issues, including state implementation of computer science education initiatives. Prior to
joining Code.org, she was a 2014–15 Albert Einstein Distinguished Educator Fellow, placed at the
National Science Foundation in the Computer and Information Sciences and Engineering Directorate.
She taught secondary mathematics for six years at Alexander Middle School and Athens Middle
School, where she received the Buck Martin Secondary State Award for excellence in mathematics
teaching from the Ohio Council of Teachers of Mathematics. She co-founded the Southeast Ohio
Math Teachers’ Circle, and her dissertation research explored teacher identity and professional devel-
opment. She holds a doctorate in curriculum and instruction and a master’s degree in cultural studies
in education from Ohio University.

258 K–12 Computer Science Framework

Appendix B: Biographies of Writers and Development Staff

Rachel Phillips
Director of Research and Evaluation, Code.org

Rachel Phillips is the director of research and evaluation at Code.org. Prior to joining Code.org, she
conducted evaluations and developed curriculum for the Big History Project. Additionally, she was the
program director for a National Science Foundation-funded research project studying the impacts of
tinkering and making on low-income youth and how those activities can increase participation in the
science, technology, engineering, and math (STEM) fields. Her research interests include student and
teacher learning in formal education spaces, with a particular focus on traditionally marginalized and
underserved youth. Most of her research has been in the context of the STEM fields, and her more
recent publications are related to learning in online gaming environments and the methodology used to
study learning in these types of environments. She earned her doctorate in learning sciences from the
University of Washington in 2011 and a master of arts in teaching from American University in 2006.

Debbie Carter
Editor, Educational Consultant

Miranda Parker
Intern, Georgia Tech

Lian Halbert
Operations, Code.org

Consultants/Process Advisors
Courtney K. Blackwell
Outlier Research & Evaluation, UChicago STEM Education, University of Chicago

Jeanne Century
Outlier Research & Evaluation, UChicago STEM Education, University of Chicago

Jennifer Childress
Achieve

Thomas Keller
Maine Mathematics and Science Alliance

Heather King
Outlier Research & Evaluation, UChicago STEM Education, University of Chicago

K–12 Computer Science Framework 259

Appendix C: Glossary
The glossary includes definitions of terms used in the statements in the framework. These terms are
defined for readers of the framework and are not necessarily intended to be the definitions or terms
that are seen by students.

Table C.1: Glossary Terms

T E R M D E F I N I T I O N

abstraction (process): The process of reducing complexity by focusing on the main idea. By hiding details
irrelevant to the question at hand and bringing together related and useful details, abstraction
reduces complexity and allows one to focus on the problem.

(product): A new representation of a thing, a system, or a problem that helpfully reframes a
problem by hiding details irrelevant to the question at hand. [MDESE, 2016]

accessibility The design of products, devices, services, or environments for people who experience
disabilities. Accessibility standards that are generally accepted by professional groups include
the Web Content Accessibility Guidelines (WCAG) 2.0 and Accessible Rich Internet Applica-
tions (ARIA) standards. [Wikipedia]

algorithm A step-by-step process to complete a task.

analog The defining characteristic of data that is represented in a continuous, physical way. Whereas
digital data is a set of individual symbols, analog data is stored in physical media, such as the
surface grooves on a vinyl record, the magnetic tape of a VCR cassette, or other nondigital
media. [Techopedia]

app A type of application software designed to run on a mobile device, such as a smartphone or
tablet computer. Also known as a mobile application. [Techopedia]

artifact Anything created by a human. See computational artifact for the definition used in computer
science.

audience Expected end users of a computational artifact or system.

accessibility The design of products, devices, services, or environments for people who experience
disabilities. Accessibility standards that are generally accepted by professional groups include
the Web Content Accessibility Guidelines (WCAG) 2.0 and Accessible Rich Internet Applica-
tions (ARIA) standards. [Wikipedia]

authentication The verification of the identity of a person or process. [FOLDOC]

260 K–12 Computer Science Framework

Appendix C: Glossary

automate;
automation

automate: To link disparate systems and software so that they become self-acting or self-regu-
lating. [Ross, 2016]

automation: The process of automating.

Boolean A type of data or expression with two possible values: true and false. [FOLDOC]

bug An error in a software program. It may cause a program to unexpectedly quit or behave in an
unintended manner. [Tech Terms]

The process of finding and correcting errors (bugs) is called debugging. [Wikipedia]

code Any set of instructions expressed in a programming language. [MDESE, 2016]

comment A programmer-readable annotation in the code of a computer program added to make the
code easier to understand. Comments are generally ignored by machines. [Wikipedia]

complexity The minimum amount of resources, such as memory, time, or messages, needed to solve a
problem or execute an algorithm. [NIST/DADS]

component An element of a larger group. Usually, a component provides a particular service or group of
related services. [Tech Terms, TechTarget]

computational Relating to computers or computing methods.

computational
artifact

Anything created by a human using a computational thinking process and a computing device.
A computational artifact can be, but is not limited to, a program, image, audio, video,
presentation, or web page file. [College Board, 2016]

computational
thinking

The human ability to formulate problems so that their solutions can be represented as
computational steps or algorithms to be executed by a computer. [Lee, 2016]

computer A machine or device that performs processes, calculations, and operations based on instruc-
tions provided by a software or hardware program. [Techopedia]

computer science The study of computers and algorithmic processes, including their principles, their hardware
and software designs, their implementation, and their impact on society. [ACM, 2006]

computing Any goal-oriented activity requiring, benefiting from, or creating algorithmic processes.
[MDESE, 2016]

computing device A physical device that uses hardware and software to receive, process, and output information.
Computers, mobile phones, and computer chips inside appliances are all examples of
computing devices.

computing
system

A collection of one or more computers or computing devices, together with their hardware
and software, integrated for the purpose of accomplishing shared tasks. Although a computing
system can be limited to a single computer or computing device, it more commonly refers to a
collection of multiple connected computers, computing devices, and hardware.

K–12 Computer Science Framework 261

Appendix C: Glossary

conditional A feature of a programming language that performs different computations or actions depend-
ing on whether a programmer-specified Boolean condition evaluates to true or false. [MDESE,
2016]

(A conditional could refer to a conditional statement, conditional expression, or conditional
construct.)

configuration (process): Defining the options that are provided when installing or modifying hardware and
software or the process of creating the configuration (product). [TechTarget]

(product): The specific hardware and software details that tell exactly what the system is made
up of, especially in terms of devices attached, capacity, or capability. [TechTarget]

connection A physical or wireless attachment between multiple computing systems, computers, or
computing devices.

connectivity A program’s or device’s ability to link with other programs and devices. [Webopedia]

control;
control structure

control: (in general) The power to direct the course of actions.

(in programming) The use of elements of programming code to direct which actions take place
and the order in which they take place.

control structure: A programming (code) structure that implements control. Conditionals and
loops are examples of control structures.

culture;
cultural practices

culture: A human institution manifested in the learned behavior of people, including their
specific belief systems, language(s), social relations, technologies, institutions, organizations,
and systems for using and developing resources. [NCSS, 2013]

cultural practices: The displays and behaviors of a culture.

cybersecurity The protection against access to, or alteration of, computing resources through the use of
technology, processes, and training. [TechTarget]

data Information that is collected and used for reference or analysis. Data can be digital or nondigi-
tal and can be in many forms, including numbers, text, show of hands, images, sounds, or
video. [CAS, 2013; Tech Terms]

data structure A particular way to store and organize data within a computer program to suit a specific
purpose so that it can be accessed and worked with in appropriate ways. [TechTarget]

data type A classification of data that is distinguished by its attributes and the types of operations that
can be performed on it. Some common data types are integer, string, Boolean (true or false),
and floating-point.

debugging The process of finding and correcting errors (bugs) in programs. [MDESE, 2016]

decompose;
decomposition

decompose: To break down into components.

decomposition: Breaking down a problem or system into components. [MDESE, 2016]

http://www.webopedia.com/TERM/P/program.html

262 K–12 Computer Science Framework

Appendix C: Glossary

device A unit of physical hardware that provides one or more computing functions within a computing
system. It can provide input to the computer, accept output, or both. [Techopedia]

digital A characteristic of electronic technology that uses discrete values, generally 0 and 1, to
generate, store, and process data. [Techopedia]

digital citizenship The norms of appropriate, responsible behavior with regard to the use of technology. [MDESE,
2016]

efficiency A measure of the amount of resources an algorithm uses to find an answer. It is usually
expressed in terms of the theoretical computations, the memory used, the number of messag-
es passed, the number of disk accesses, etc. [NIST/DADS]

encapsulation The technique of combining data and the procedures that act on it to create a type. [FOLDOC]

encryption The conversion of electronic data into another form, called ciphertext, which cannot be easily
understood by anyone except authorized parties. [TechTarget]

end user (or user) A person for whom a hardware or software product is designed (as distinguished from the
developers). [TechTarget]

event Any identifiable occurrence that has significance for system hardware or software. User-gener-
ated events include keystrokes and mouse clicks; system-generated events include program
loading and errors. [TechTarget]

event handler A procedure that specifies what should happen when a specific event occurs.

execute;
execution

execute: To carry out (or “run”) an instruction or set of instructions (program, app, etc.).

execution: The process of executing an instruction or set of instructions. [FOLDOC]

hardware The physical components that make up a computing system, computer, or computing device.
[MDESE, 2016]

hierarchy An organizational structure in which items are ranked according to levels of importance.
[TechTarget]

human–computer
interaction (HCI)

The study of how people interact with computers and to what extent computing systems are
or are not developed for successful interaction with human beings. [TechTarget]

identifier The user-defined, unique name of a program element (such as a variable or procedure) in
code. An identifier name should indicate the meaning and usage of the element being named.
[Techopedia]

implementation The process of expressing the design of a solution in a programming language (code) that can
be made to run on a computing device.

inference A conclusion reached on the basis of evidence and reasoning. [Oxford]

K–12 Computer Science Framework 263

Appendix C: Glossary

input The signals or instructions sent to a computer. [Techopedia]

integrity The overall completeness, accuracy, and consistency of data. [Techopedia]

Internet The global collection of computer networks and their connections, all using shared protocols
to communicate. [CAS, 2013]

iterative Involving the repeating of a process with the aim of approaching a desired goal, target, or
result. [MDESE, 2016]

loop A programming structure that repeats a sequence of instructions as long as a specific condition
is true. [Tech Terms]

memory Temporary storage used by computing devices. [MDESE, 2016]

model A representation of some part of a problem or a system. [MDESE, 2016]

Note: This definition differs from that used in science.

modularity The characteristic of a software/web application that has been divided (decomposed) into
smaller modules. An application might have several procedures that are called from inside its
main procedure. Existing procedures could be reused by recombining them in a new applica-
tion. [Techopedia]

module A software component or part of a program that contains one or more procedures. One or
more independently developed modules make up a program. [Techopedia]

network A group of computing devices (personal computers, phones, servers, switches, routers, etc.)
connected by cables or wireless media for the exchange of information and resources.

operation An action, resulting from a single instruction, that changes the state of data. [Free Dictionary]

packet The unit of data sent over a network. [Tech Terms]

parameter A special kind of variable used in a procedure to refer to one of the pieces of data received as
input by the procedure. [MDESE, 2016]

piracy The illegal copying, distribution, or use of software. [TechTarget]

procedure An independent code module that fulfills some concrete task and is referenced within a larger
body of program code. The fundamental role of a procedure is to offer a single point of
reference for some small goal or task that the developer or programmer can trigger by
invoking the procedure itself. [Techopedia]

In this framework, procedure is used as a general term that may refer to an actual procedure or
a method, function, or module of any other name by which modules are known in other
programming languages.

process A series of actions or steps taken to achieve a particular outcome. [Oxford]

264 K–12 Computer Science Framework

Appendix C: Glossary

program;
programming

program (n): A set of instructions that the computer executes to achieve a particular objective.
[MDESE, 2016]

program (v): To produce a program by programming.

programming: The craft of analyzing problems and designing, writing, testing, and maintain-
ing programs to solve them. [MDESE, 2016]

protocol The special set of rules used by endpoints in a telecommunication connection when they
communicate. Protocols specify interactions between the communicating entities. [TechTarget]

prototype An early approximation of a final product or information system, often built for demonstration
purposes. [TechTarget, Techopedia]

redundancy A system design in which a component is duplicated, so if it fails, there will be a backup.
[TechTarget]

reliability An attribute of any system that consistently produces the same results, preferably meeting or
exceeding its requirements. [FOLDOC]

remix The process of creating something new from something old. Originally a process that involved
music, remixing involves creating a new version of a program by recombining and modifying
parts of existing programs, and often adding new pieces, to form new solutions. [Kafai &
Burke, 2014]

router A device or software that determines the path that data packets travel from source to destina-
tion. [TechTarget]

scalability The capability of a network to handle a growing amount of work or its potential to be enlarged
to accommodate that growth. [Wikipedia]

security See the definition for cybersecurity.

simulate;
simulation

simulate: To imitate the operation of a real-world process or system.

simulation: Imitation of the operation of a real-world process or system. [MDESE, 2016]

software Programs that run on a computing system, computer, or other computing device.

storage (place) A place, usually a device, into which data can be entered, in which the data can be
held, and from which the data can be retrieved at a later time. [FOLDOC]

(process) A process through which digital data is saved within a data storage device by means
of computing technology. Storage is a mechanism that enables a computer to retain data,
either temporarily or permanently. [Techopedia]

string A sequence of letters, numbers, and/or other symbols. A string might represent, for example,
a name, address, or song title. Some functions commonly associated with strings are length,
concatenation, and substring. [TechTarget]

K–12 Computer Science Framework 265

Appendix C: Glossary

structure A general term used in the framework to discuss the concept of encapsulation without
specifying a particular programming methodology.

switch A high-speed device that receives incoming data packets and redirects them to their destina-
tion on a local area network (LAN). [Techopedia]

system A collection of elements or components that work together for a common purpose. [TechTar-
get]

See also the definition for computing system.

test case A set of conditions or variables under which a tester will determine whether the system being
tested satisfies requirements or works correctly. [STF]

topology The physical and logical configuration of a network; the arrangement of a network, including
its nodes and connecting links. A logical topology is the way devices appear connected to the
user. A physical topology is the way they are actually interconnected with wires and cables.
[PCMag]

troubleshooting A systematic approach to problem solving that is often used to find and resolve a problem,
error, or fault within software or a computing system. [Techopedia, TechTarget]

user See the definition for end user.

variable A symbolic name that is used to keep track of a value that can change while a program is
running. Variables are not just used for numbers; they can also hold text, including whole
sentences (strings) or logical values (true or false). A variable has a data type and is associated
with a data storage location; its value is normally changed during the course of program
execution. [CAS, 2013; Techopedia]

Note: This definition differs from that used in math.

266 K–12 Computer Science Framework

Appendix C: Glossary

References
Some definitions can directly from the sources listed in Table C.2, while others were excerpted or
adapted to include content relevant to this framework.

Table C.2: Glossary References

ACM, 2006 A Model Curriculum for K–12 Computer Science

Tucker, A., McCowan, D., Deek, F., Stephenson, C., Jones, J., & Verno, A. (2006). A model
curriculum for K–12 computer science: Report of the ACM K–12 task force curriculum commit-
tee (2nd ed.). New York, NY: Association for Computing Machinery.

CAS, 2013 Computing At School’s Computing in the National Curriculum: A Guide for Primary
Teachers

Computing At School. (2013). Computing in the national curriculum: A guide for primary
teachers. Belford, UK: Newnorth Print. Retrieved from http://www.computingatschool.org.uk/
data/uploads/CASPrimaryComputing.pdf

College Board,
2016

College Board Advanced Placement® Computer Science Principles

College Board. (2016). AP Computer Science Principles course and exam description. New
York, NY: College Board. Retrieved from https://secure-media.collegeboard.org/digitalServices/
pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf

FOLDOC Free On-Line Dictionary of Computing

Free on-line dictionary of computing. (n.d.). Retrieved from http://foldoc.org

Free Dictionary The Free Dictionary

The free dictionary. (n.d.). Retrieved from http://www.thefreedictionary.com

Kafai & Burke,
2014

Connected Code: Why Children Need to Learn Programming

Kafai, Y., & Burke, Q. (2014). Connected code: Why children need to learn programming.
Cambridge, MA: MIT Press.

Lee, 2016 Reclaiming the Roots of CT

Lee, I. (2016). Reclaiming the roots of CT. CSTA Voice: The Voice of K–12 Computer Science
Education and Its Educators, 12(1), 3–4. Retrieved from http://www.csteachers.org/resource/
resmgr/Voice/csta_voice_03_2016.pdf

MDESE, 2016 Massachusetts Digital Literacy and Computer Science (DL&CS) Standards

Massachusetts Department of Elementary and Secondary Education. (2016, June). 2016
Massachusetts digital literacy and computer science (DLCS) curriculum framework. Malden, MA:
Author. Retrieved from http://www.doe.mass.edu/frameworks/dlcs.pdf

Table continues on next page

http://www.computingatschool.org.uk/data/uploads/CASPrimaryComputing.pdf
http://www.computingatschool.org.uk/data/uploads/CASPrimaryComputing.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
http://foldoc.org/
http://www.thefreedictionary.com
http://www.csteachers.org/resource/resmgr/Voice/csta_voice_03_2016.pdf
http://www.csteachers.org/resource/resmgr/Voice/csta_voice_03_2016.pdf
http://www.doe.mass.edu/frameworks/dlcs.pdf

K–12 Computer Science Framework 267

Appendix C: Glossary

NCSS, 2013 College, Career & Civic Life (C3) Framework for Social Studies State Standards

National Council for the Social Studies. (2013). The college, career, and civic life (C3) framework
for social studies state standards: Guidance for enhancing the rigor of K–12 civics, economics,
geography, and history. Silver Spring, MD: Author. Retrieved from http://www.socialstudies.org/
system/files/c3/C3-Framework-for-Social-Studies.pdf

NIST/DADS National Institute of Science and Technology Dictionary of Algorithms and Data Structures

Pieterse, V., & Black, P. E. (Eds.). (n.d). Dictionary of algorithms and data structures. Retrieved
from https://xlinux.nist.gov/dads//

Oxford Oxford Dictionaries

Oxford dictionaries. (n.d.). Retrieved from http://www.oxforddictionaries.com/us

PCmag PCmag.com Encyclopedia

PCmag.com encyclopedia. (n.d.). Retrieved from http://www.pcmag.com/encyclopedia/
term/46301/logical-vs-physical-topology

Ross, 2016 What Is Automation

Ross, B. (2016, May 10). What is automation and how can it improve customer service?
Information Age. Retrieved from http://www.information-age.com/industry/soft-
ware/123461408/what-automation-and-how-can-it-improve-customer-service

STF Software Testing Fundamentals

Software testing fundamentals. (n.d). Retrieved from http://softwaretestingfundamentals.com

Tech Terms Tech Terms

Tech terms computer dictionary. (n.d.). Retrieved from http://www.techterms.com

Techopedia Techopedia

Techopedia technology dictionary. (n.d.). Retrieved from https://www.techopedia.com/
dictionary

TechTarget TechTarget Network

TechTarget network. (n.d.). Retrieved from http://www.techtarget.com/network

Webopedia Webopedia

Webopedia. (n.d.). Retrieved from http://www.webopedia.com

Wikipedia Wikipedia

Wikipedia: The free encyclopedia. (n.d.). Retrieved from https://www.wikipedia.org/

Table continued from previous page

http://www.socialstudies.org/system/files/c3/C3-Framework-for-Social-Studies.pdf
http://www.socialstudies.org/system/files/c3/C3-Framework-for-Social-Studies.pdf
https://xlinux.nist.gov/dads//
http://www.oxforddictionaries.com/us
http://www.pcmag.com/encyclopedia/term/46301/logical-vs-physical-topology
http://www.pcmag.com/encyclopedia/term/46301/logical-vs-physical-topology
http://www.information-age.com/industry/software/123461408/what-automation-and-how-can-it-improve-customer-service
http://www.information-age.com/industry/software/123461408/what-automation-and-how-can-it-improve-customer-service
http://softwaretestingfundamentals.com
http://www.techterms.com
https://www.techopedia.com/dictionary
https://www.techopedia.com/dictionary
https://www.techopedia.com/dictionary
http://www.techtarget.com/network
http://www.techtarget.com/network
http://www.techtarget.com/network
http://www.webopedia.com
https://www.wikipedia.org/

K–12 Computer Science Framework 269

Appendix D: Early Childhood
Research Review
Defined as “the study of computers and algorithmic processes, including their principles, their hard-
ware and software designs, their applications, and their impact on society” (Tucker et al., 2006, p. 2),
computer science is predicated on the use of computer technologies—a topic historically debated in
the early childhood education sector. Importantly, engaging with technology is not the same as doing
computer science, but technology access and use is often a precursor and lead-in for engaging in
computer science. Thus, while caution should be taken when interpreting research on the effects of
technology on children’s learning and development, this research provides a background for under-
standing an important contextual factor in computer science education.

Despite the ubiquitous nature of technology in today’s world, and even very young children’s engage-
ment in digitally mediated experiences (e.g., Rideout, 2013; Blackwell, Wartella, Lauricella, & Robb,
2015), the integration of technology in early childhood education often stands in opposition with
traditional notions of prekindergarten learning environments. Though a large body of research exists
on the positive impacts of high-quality educational media for young children’s learning and develop-
ment (e.g., Fisch & Truglio, 2001; Huston, Anderson,
Wright, Linebarger, & Schmitt, 2001; Pasnik & Llorente,
2013; Penuel et al., 2012), concerns remain over
potential negative consequences arising from too much
screen time or exposure to violent content (see Ander-
son & Bushman, 2001, for review). Further, technology
is often viewed as disrupting and displacing children’s
social interactions, imaginative play, and active learning
(Donohue, 2015). Indeed, a primary reason why early
childhood educators do not use technology more
often, even if they have access to it, remains these
foundational attitudes toward technology being the
antithesis of what early education experiences should
be (e.g., Cordes & Miller, 2000; Lindahl & Folkesson,
2012).

While concerns remain, several major professional organizations have revised their stance on the role
of digital media and technology as they recognize that digital technologies are essential tools for
learning and creation (Dooley, Flint, Holbrook, May, & Albers, 2011). In 2012, the National Association
for the Education of Young Children (NAEYC) and the Fred Rogers Center (FRC) released a joint
position statement supporting the developmentally appropriate and intentional use technology in ear-

Further, in 2015 the American
Academy of Pediatrics (AAP, 2015)
made a landmark revision to its no
screen time stance by recognizing
that quality educational media,
especially when used with active
caregiver involvement, can benefit
young children’s learning and
development.

270 K–12 Computer Science Framework

Appendix D: Early Childhood Research Review

ly childhood education (NAEYC & FRC, 2012). Further, in 2015 the American Academy of Pediatrics
(AAP, 2015) made a landmark revision to its no screen time stance by recognizing that quality educa-
tional media, especially when used with active caregiver involvement, can benefit young children’s
learning and development.

As both the NAEYC/FRC (2012) and AAP (2015) statements suggest, technology can have a place in
young children’s learning but does not substitute traditional educative activities (e.g., peer-to-peer
and adult-child social interactions, imaginative play, hands-on learning) that are so foundational to
early childhood education. When it comes to computer science, a similar framing is taken, where
computing technologies supplement hands-on learning activities. That is, while developmentally
appropriate and high-quality digital computer science curricula exist, they can—and should—be used
to support physical computing environments (i.e., without digital technology) in early childhood
education. As Haugland (1992) pointed out, the pairing of computer-based activities with unplugged
ones can enhance young children’s problem-solving, abstraction, and verbal skills.

Drawing on notions from constructionism (Papert, 1980) and aligned with developmentally appropriate
practices (Copple & Bredekamp, 2009), Bers, Ponte, Juelick, Viera, and Schenker (2002) articulated four
tenets of technology integration in the context of computer science in early childhood education:

1. Technology environments can aid student learning by engaging in hands-on, active inquiry, and
play-based activities;

2. Physical objects offer critical support for developing concrete thinking skills and understanding
abstract phenomena;

3. Crosscurricular “powerful ideas” are necessary to connect all areas of learning; and
4. Self-reflection is critical to engage students in metacognitive thought processes.

While much of the computer science rhetoric has focused on preparing students for the 21st century
workforce, these four tenets—and the constructionist framework more generally—elucidate opportu-
nities for computer science education to expand beyond technical skill development and content

K–12 Computer Science Framework 271

Appendix D: Early Childhood Research Review

knowledge acquisition. Viewed as such, computer science provides a platform for students to develop
and engage in higher-order thinking, problem solving, and metacognitive thought processes that are
transferrable outside the computer programming environment (diSessa, 2000; Papert, 1980; Clements
& Natasi, 1999). As Papert (1980) articulated, the value of computer science stems from “seeing ideas
from computer science not only as instruments of explanation of how learning and thinking in fact do
work, but also as instruments of change that might alter, and possibly improve, the way people learn
and think” (pp. 208–209).

Though no computer science concepts or practices are specified in Bers’ and colleagues’ (2002)
tenets, they provide guidance for instructional approaches to computer science in early learning
environments. Indeed, the development of tangible user interfaces is one example, in which tradition-
al concrete manipulatives (e.g., building blocks) and digital touchscreens offer a blended learning
experience for learning foundational computational knowledge and skills (e.g., Horn, AlSulaiman, &
Koh, 2013; Horn, Crouser, & Bers, 2012). For example, Horn and colleagues (2013) designed a blend-
ed experience in which children engage in computer
programming activities by placing stickers on the paper
storybook, which then control the actions of digital
characters on a smartphone or tablet computer. Thus,
embedded in the traditional reading experience were
opportunities for young children to engage in key com-
puter science concepts, including sequencing and loops.

Others have developed tangible programming interfaces
to bring the traditional online computer programming
languages into the real world (e.g., Bers & Horn, 2010;
Horn & Jacob, 2007; Wyeth, 2008). Originally conceptu-
alized by Perlman (1976) in the 1970s, tangible interfaces
offer a way to remove the text and motor skill barriers
that limit young children’s ability to engage in computer programming. For example, Bers and Horn
(2010) developed a tangible programming language by using interlocking blocks that allow preschool
children to physically construct a computer program instead of writing one with a keyboard and
mouse on the computer. Thus, by providing multiple entry points—plugged and unplugged—for
building computer science skills and knowledge, educators can offer developmentally appropriate
and engaging opportunities for young children that can spark an early interest in computer science
and learning overall.

A growing body of research on plugged, unplugged, and blended computer science early learning
experiences suggest that children as young as 3 and 4 can engage in computer science activities—
such as creating, running, and debugging a computer program—and can learn and apply key com-
puter science concepts—including sequencing, loops, parameters, and conditionals (e.g., Bers,

Research shows that
engagement in a structured
computer programming
environment aids young
children’s number sense,
visual memory, and
language skills.

272 K–12 Computer Science Framework

Appendix D: Early Childhood Research Review

2008a, 2008b; Elkin, Sullivan, & Bers, 2014; Flannery & Bers, 2013; Kazakoff, Sullivan, & Bers, 2013;
Martinez, Gomez, & Benotti, 2015; Morgado, Cruz, & Kahn, 2010; Sullivan, Elkin, & Bers, 2015). For
example, Martinez and colleagues (2015) found that 3- to 5-year-olds could learn and apply basic
computer science concepts of sequencing, conditionals, and loops by engaging in a mix of un-
plugged activities and plugged robotics activities. Similarly, Gordon, Ackerman, and Breazeal (2015)
used social robots to help preschool students explore various computer science concepts, including
event-based logic, sequencing, and nondeterminism. Drawing on four years of work with more than
150 3- to 5-year-old children, Morgado and colleagues (2010) developed a “cookbook” of preschool
computer science topics that range from simple programming syntax to more complex topics of
input/output and client/server relationships.

Others have investigated whether young children can transfer knowledge from computer science-
related activities to other content areas. For example, Kazakoff and colleagues (2013) showed that
preschool and kindergarten children who engaged in a one-week robotics and programming workshop
significantly increased in their story sequencing abilities from pre- to post-workshop, suggesting a
transfer of knowledge from the computer science context to literacy. Research on social robots also
supports the transfer of computer science learning to literacy (e.g., Fridin, 2014; Gordon & Breazeal,
2015; Kory Westlund & Breazeal, 2015; Movellan, Eckhardt, Virnes, & Rodriguez, 2009). A study by Kory
Westlund and Breazeal (2015) that found preschool children learned new words and created stories by
engaging in a storytelling game with a social robot, while Movellan and colleagues (2009) showed
similar findings with even younger children aged 18–24 months, where engagement with a social robot
increased knowledge of target vocabulary words by 27% over a two-week period. Further, a review by
Clements (1999) showed that engagement in a structured computer programming environment aided
young children’s number sense, visual memory, and language skills. Importantly, unstructured computer

K–12 Computer Science Framework 273

Appendix D: Early Childhood Research Review

programming had little effect on children’s ability to learn computer science concepts or transfer learn-
ing, highlighting the need for intentional teacher scaffolding that helps students make connections
between computer programming and other academic and everyday experiences (Clements, 1999).

Finally, early engagement in computer programming has been noted as one way to increase students’
interest in pursuing careers related to computer science and science, technology, engineering, and math
(STEM) as well as decrease children’s gender-based stereotypes before they fully formalize in later
elementary school (Madill et al., 2007; Metz, 2007; Steele, 1997). Prior work suggests that STEM and
computer science interest and self-efficacy declines in late elementary and middle school and persists
through high school and postsecondary education (e.g., Google & Gallup, 2015; Pajares, 2006; Unfried,
Faber, & Wiebe, 2014). This trend is even more stark for females and underrepresented minorities (e.g.,
Corbett, Hill, & St. Rose, 2008; Google, 2014; Master, Cheryan, & Meltzoff, 2016; Weinburgh, 1995),
suggesting a need to provide early computer science-related experiences that are built upon and
continued throughout children’s K–12 education experience. This appendix and the K–12 Computer
Science Framework itself offer a foundation for addressing this need to make computer science learning
opportunities available to all students as they progress from prekindergarten to high school and beyond.

274 K–12 Computer Science Framework

Appendix D: Early Childhood Research Review

References
American Academy of Pediatrics. (2015). Growing up digital: Media research symposium. Washington, DC: Author. Retrieved

from https://aap.org/en-us/Documents/digital_media_symposium_proceedings.pdf

Anderson, C. A., & Bushman, B. J. (2001). Effects of violent video games on aggressive behavior, aggressive cognition,
aggressive affect, physiological arousal, and prosocial behavior: A meta-analytic review of the scientific literature.
Psychological Science, 12, 353–359.

Bers, M. U. (2008a). Blocks to robots: Learning with technology in the early childhood classroom. New York, NY: Teachers
College Press.

Bers, M. U. (2008b). Blocks, robots and computers: Learning about technology in early childhood. New York, NY: Teachers
College Press.

Bers, M. U., & Horn, M. S. (2010). Tangible programming in early childhood: Revisiting developmental assumptions through
new technologies. In I. R. Berson & M. J. Berson (Eds.), High-tech tots: Childhood in a digital world (p. 49–70). Greenwich,
CT: Information Age Publishing.

Bers, M. U., Ponte, I., Juelich, K., Viera, A., & Schenker, J. (2002). Teachers as designers: Integrating robotics into early
childhood education. Information Technology in Childhood Education Annual, 2002(1), 123–145.

Blackwell, C. K., Wartella, E., Lauricella, A. R., & Robb, M. (2015). Technology in the lives of educators and early childhood
programs: 2014 survey of early childhood educators. Report for the Center on Media and Human Development, North-
western University; the Fred Rogers Center, Latrobe, PA; and the National Association for the Education of Young Children,
Washington, DC.

Clements, D. (1999). The future of educational computing research: The case of computer programming. Information
Technology in Childhood Education Annual, 147–179.

Clements, D., & Nastasi, B. (1999). Metacognition, learning, and educational computer environments. Information Technology
in Childhood Education Annual, 1, 5–38.

Copple, C., & Bredekamp, S. (2009). Developmentally appropriate practice in early childhood programs serving children from
birth through age 8. Washington, DC: National Association for the Education of Young Children.

Corbett, C., Hill, S. C., & St. Rose, A. (2008). Where the girls are: The facts about gender equity in education. Washington, DC:
American Association of University Women. Retrieved from http://www.aauw.org/files/2013/02/Where-the-Girls-Are-The-
Facts-About-Gender-Equity-in-Education.pdf

Cordes, C., & Miller, E. (2000). Fool’s gold: A critical look at computers in childhood. New York, NY: Alliance for Childhood.
Retrieved from http://www.allianceforchildhood.net/projects/computers/computers_reports.htm

diSessa, A. A. (2000). Changing minds: Computers, learning and literacy. Cambridge, MA: MIT Press.

Donohue, C. (2015). Technology and digital media as tools for teaching and learning in the digital age. In C. Donohue (Ed.),
Technology and digital media in the early years: Tools for teaching and learning (pp. 21–35). New York, NY: Routledge.
Washington, DC: National Association for the Education of Young Children.

Dooley, C. M., Flint, A. S., Holbrook, T., May, L., & Albers, P. (2011). The digital frontier in early childhood education. Language
Arts, 89(2), 83–85.

Elkin, M., Sullivan, A., & Bers, M. U. (2014). Implementing a robotics curriculum in an early childhood Montessori classroom.
Journal of Information Technology Education: Innovations in Practice, 13, 153–169.

Fisch, S. M., & Truglio, R. T. (Eds.). (2001). “G” is for growing: Thirty years of research on children and Sesame Street. Mahwah,
NJ: Lawrence Erlbaum Associates.

Flannery, L. P., & Bers, M. U. (2013). Let’s dance the “robot hokey-pokey!” Children’s programming approaches and
achievement throughout early cognitive development. Journal of Research on Technology in Education, 46(1), 81–101.

https://aap.org/en-us/Documents/digital_media_symposium_proceedings.pdf
http://www.aauw.org/files/2013/02/Where-the-Girls-Are-The-Facts-About-Gender-Equity-in-Education.pdf
http://www.aauw.org/files/2013/02/Where-the-Girls-Are-The-Facts-About-Gender-Equity-in-Education.pdf
http://www.allianceforchildhood.net/projects/computers/computers_reports.htm

K–12 Computer Science Framework 275

Appendix D: Early Childhood Research Review

Fridin, M. (2014). Storytelling by a kindergarten social assistive robot: A tool for constructive learning in preschool education.
Computers & Education, 70, 53–64.

Google. (2014). Women who choose computer science—what really matters: The critical role of exposure and encouragement.
Mountain View, CA: Author. Retrieved from https://docs.google.com/file/d/0B-E2rcvhnlQ_a1Q4VUxWQ2dtTHM/edit

Google & Gallup. (2015). Images of computer science: Perceptions among students, parents, and educators in the U.S.
Retrieved from http://g.co/cseduresearch

Gordon, M., Ackermann, E., & Breazeal, C. (2015, March). Social robot toolkit: Tangible programming for young children. In
Proceedings of the 10th ACM/IEEE International Conference on Human-Robot Interaction: Extended Abstracts, Portland, OR.

Gordon, G., & Breazeal, C. (2015, January). Bayesian active learning-based robot tutor for children’s word-reading skills. In
Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, TX.

Haugland, S. W. (1992). The effect of computer software on preschool children’s developmental gains. Journal of Computing
in Childhood Education, 3(1), 15–30.

Horn, M. S., AlSulaiman, S., & Koh, J. (2013, June). Translating Roberto to Omar. In Proceedings of the 12th ACM International
Conference on Interaction Design and Children, New York, NY.

Horn, M. S., Crouser, R. J., & Bers, M. U. (2012). Tangible interaction and learning: The case for a hybrid approach. Personal
and Ubiquitous Computing, 16(4), 379–389.

Horn, M. S., & Jacob, R. J. K. (2007). Designing tangible programming languages for classroom use. In Proceedings of TEI’07
First International Conference on Tangible and Embedded Interaction, Baton Rouge, LA.

Huston, A. C., Anderson, D. R., Wright, J. C., Linebarger, D. L., & Schmitt, K. L. (2001). Sesame Street viewers as adolescents:
The recontact study. In S. M. Fisch & R. T. Truglio (Eds.), “G” is for growing: Thirty years of research on children and
Sesame Street (pp.131–144). Mahwah, NJ: Lawrence Erlbaum Associates.

Kazakoff, E. R., Sullivan, A., & Bers, M. (2013). The effect of a classroom-based intensive robotics and programming workshop
on sequencing ability in early childhood. Early Childhood Education Journal, 41, 245–255.

Kory Westlund, J. M., & Breazeal, C. (2015, March). The interplay of robot language level with children’s language learning
during storytelling. In Proceedings of the 10th Annual ACM/IEEE International Conference on Human-Robot Interaction
(pp. 65–66).

Lindahl, M., & Folkesson, A. (2012). Can we let computers change practice? Educators’ interpretations of preschool tradition.
Computers in Human Behavior, 28(5), 1728–1737. doi: 10.1016/j.chb.2012.04.012

Madill, H., Campbell, R. G., Cullen, D. M., Armour, M. A., Einsiedel, A. A., Ciccocioppo, A. L., . . . & Coffin, W. L. (2007).
Developing career commitment in STEM-related fields: Myth versus reality. In R. J. Burke & M. C. Mattis (Eds.), Women
and minorities in science, technology, engineering and mathematics: Upping the numbers (pp. 210–244). Northampton
MA: Edward Elgar Publishing.

Martinez, C., Gomez, M. J., & Benotti, L. (2015, July). A comparison of preschool and elementary school children learning
computer science concepts through a multilanguage robot programming platform. In Proceedings of the 2015 ACM
Conference on Innovation and Technology in Computer Science Education (pp. 159–164), Vilanius, Lithuania.

Master, A., Cheryan, S., & Meltzoff, A. N. (2016). Computing whether she belongs: Stereotypes undermine girls’ interest and
sense of belonging in computer science. Journal of Educational Psychology, 108(3), 1–14. doi: 10.1037/edu0000061

Metz, S. S. (2007). Attracting the engineering of 2020 today. In R. J. Burke & M. C. Mattis (Eds.), Women and minorities in
science, technology, engineering and mathematics: Upping the numbers (pp. 184–209). Northampton, MA: Edward
Elgar Publishing.

Morgado, L., Cruz, M., & Kahn K. (2010). Preschool cookbook of computer programming topics. Australasian Journal of
Educational Technology, 26(3), 309–326.

Movellan, J., Eckhardt, M., Virnes, M., & Rodriguez, A. (2009, March). Sociable robot improves toddler vocabulary skills. In
Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction, San Diego, CA.

https://docs.google.com/file/d/0B-E2rcvhnlQ_a1Q4VUxWQ2dtTHM/edit
http://g.co/cseduresearch
http://10.1016/j.chb
http://10.1037/edu

276 K–12 Computer Science Framework

Appendix D: Early Childhood Research Review

National Association for the Education of Young Children & Fred Rogers Center. (2012). Position statement: Technology and
young children. Washington, DC: Author. Retrieved from http://www.naeyc.org/content/technology-and-young-children

Pajares, F. (2006). Self-efficacy during childhood and adolescence: Implications for teachers and parents. In F. Pajares & T. C.
Urdan (Eds.), Self-efficacy beliefs of adolescents (pp. 339–367). Greenwich, CA: Information Age Publishing.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books.

Pasnik, S., & Llorente, C. (2013). Preschool teachers can use a PBS KIDS transmedia curriculum supplement to support young
children’s mathematics learning: Results of a randomized controlled trial. A report to the CPB-PBS Ready To Learn
Initiative. Waltham, MA, and Menlo Park, CA.

Penuel, W. R., Bates, L., Gallagher, L. P., Pasnik, S., Llorente, C., Townsend, E., . . . & VanderBorght, M. (2012). Supplementing
literacy instruction with a media-rich intervention: Results of a randomized controlled trial. Early Childhood Research
Quarterly, 27(2), 115–127. doi: 10.1016/j.ecresq

Perlman, R. (1976). Using computer technology to provide a creative learning environment for preschool children.
Logo memo no 24. Cambridge, MA: MIT Artificial Intelligence Laboratory.

Rideout, V. J. (2013). Zero to eight: Children’s media use in America 2013. San Francisco, CA: Common Sense Media.

Steele, C. M. (1997). A threat in the air: How stereotypes shape intellectual identity and performance. American Psychologist,
52, 613–629.

Sullivan, A., Elkin, M., & Bers, M. (2015, June). KIBO robot demo: Engaging young children in programming and engineering.
In Proceedings of the 14th ACM International Conference on Interaction Design and Children, Medford, MA.

Tucker, A., McCowan, D., Deek, F., Stephenson, C., Jones, J., & Verno, A. (2006). A model curriculum for K–12 computer
science: Report of the ACM K–12 task force curriculum committee (2nd ed.). New York, NY: Association for Computing
Machinery.

Unfried, A., Faber, M., & Wiebe, E. N. (2014, April). Gender and student attitudes toward science, technology, engineering, and
mathematics. Paper presented at the annual meeting of the American Educational Research Association, Philadelphia, PA.

Weinburgh, M. (1995). Gender differences in student attitudes toward science: A meta analysis of the literature from 1970 to
1991. Journal of Research in Science Teaching, 32(4), 387–398.

Wyeth, P. (2008). How young children learn to program with sensor, action, and logic blocks. International Journal of the
Learning Sciences, 17(4), 517–550.

http://www.achieve.org/files/Achieve-LearningProgressionsinCBP.pdf

K–12 Computer Science Framework 277

Appendix E: Bibliography of
Framework Research
Abelson, H., & diSessa. A. (1986). Turtle geometry. Cambridge, MA: MIT Press.

Achieve. (2015). The role of learning progressions in competency-based pathways. Retrieved from http://www.achieve.org/
files/Achieve-LearningProgressionsinCBP.pdf

Aho, A. (2011, January). Computation and computational thinking. ACM Ubiquity. Retrieved from http://ubiquity.acm.org/
article.cfm?id=1922682

Aivaloglou. E., & Hermans, F. (2016, September). How kids code and how we know: An exploratory study on the Scratch
repository. In Proceedings of the Twelfth Annual International Conference on International Computing Education
Research (pp. 53–61).

Akgün, L., & Özdemir, M. E. (2006). Students’ understanding of the variable as general number and unknown: A case study.
The Teaching of Mathematics, 9(1), 45–51.

Anderson, N., Lankshear, C., Timms, C., & Courtney, L. (2008). “Because it’s boring, irrelevant and I don’t like computers”:
Why high school girls avoid professionally-oriented ICT subjects. Computers & Education, 50(4), 1304–1318.

Arkansas Department of Education. (2016). Computer science curriculum framework documents. Retrieved from
http://www.arkansased.gov/divisions/learning-services/curriculum-and-instruction/curriculum-framework-documents/
computer-science

Baker, T. R., & White, S. H. (2003). The effects of GIS on students’ attitudes, self-efficacy, and achievement in middle school
science classrooms. Journal of Geography, 102(6), 243–254.

Barr, D., Harrison, J., & Conery, L. (2011, March/April). Computational thinking: A digital age skill for everyone. Learning and
Leading with Technology, 20–23.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K–12: What is involved and what is the role of the
computer science education community? ACM Inroads, 2(1), 48–54.

Battista, M. T., & Clements, D. H. (1986). The effects of Logo and CAI problem-solving environments on problem-solving
abilities and mathematics achievement. Computers in Human Behavior, 2(3), 183–193.

Baxter, G. P., & Glaser, R. (1997). An approach to analyzing the cognitive complexity of science performance assessments
(CSE Technical Report 452). Los Angeles, CA: University of California, Center for the Study of Evaluation, National Center
for Research on Evaluation, Standards, and Student Testing.

Beaumont-Walters, Y., & Soyibo, K. (2001). An analysis of high school students’ performance on five integrated science
process skills. Research in Science & Technological Education, 19(2), 133–145.

Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009). Computer science unplugged: School students doing real computing
without computers. The New Zealand Journal of Applied Computing and Information Technology, 13(1), 20–29.

Bender, E., Hubwieser, P., Schaper, N., Margaritis, M., Berges, M., Ohrndorf, L., . . . Schubert, S. (2015). Towards a competency
model for teaching computer science. Peabody Journal of Education, 90(4), 519–532. doi:
10.1080/0161956X.2015.1068082

Ben-Zvi, D., & Arcavi, A. (2001). Junior high school students’ construction of global views of data and data representations.
Educational Studies in Mathematics, 45, 35–65.

Berger, B., Daniels, N. M., & Yu, Y. W. (2016). Computational biology in the 21st century: Scaling with compressive algorithms.
Communications of the ACM, 59(8), 72–80. doi: 10.1145/2957324

Bers, M. (2008). Blocks to robots: Learning with technology in the early childhood classroom. New York City, NY: Teachers
College Press.

http://www.achieve.org/files/Achieve-LearningProgressionsinCBP.pdf
http://www.achieve.org/files/Achieve-LearningProgressionsinCBP.pdf
http://ubiquity.acm.org/article.cfm?id=1922682
http://ubiquity.acm.org/article.cfm?id=1922682
http://www.arkansased.gov/divisions/learning-services/curriculum-and-instruction/curriculum-framework-documents/computer-science
http://www.arkansased.gov/divisions/learning-services/curriculum-and-instruction/curriculum-framework-documents/computer-science

278 K–12 Computer Science Framework

Appendix E: Bibliography of Framework Research

Bers, M. (2010). The TangibleK robotics program: Applied computational thinking for young children. Early Childhood
Research & Practice, 12(2). Retrieved from http://ecrp.uiuc.edu/v12n2/bers.html

Bienkowski, M., Snow, E., Rutstein, D. W., & Grover, S. (2015). Assessment design patterns for computational thinking
practices in secondary computer science: A first look (SRI technical report). Menlo Park, CA: SRI International. Retrieved
from http://pact.sri.com/resources.html

Biggers, M., Brauer, A., & Yilmaz, T. (2008). Student perceptions of computer science: A retention study comparing graduating
seniors vs. CS leavers. In Proceedings of the 39th SIGCSE Technical Symposium on Computer Science Education (pp.
402–406), Portland, OR.

Blickenstaff, J.C. (2005). Women and science careers: Leaky pipeline or gender filter? Gender and Education, 17(4), 369–386.
doi: 10.1080/09540250500145072

Boston Public Schools. (2016). Computer science in BPS. Retrieved from http://www.bostonpublicschools.org/domain/2054

Brennan, K., Balch, C., & Chung, M. (2014). Creative computing. Retrieved from http://scratched.gse.harvard.edu/guide/files/
CreativeComputing20141015.pdf

Brennan, K., & Resnick, M. (2012). Using artifact-based interviews to study the development of computational thinking in
interactive media design. Paper presented at the annual meeting of the American Educational Research Association,
Vancouver, BC, Canada.

Brown, N. C. C., Sentance, S., Crick, T., & Humphreys, S. (2014). Restart: The resurgence of computer science in UK schools.
ACM Transactions on Computing Education, 14(2), Article 9. doi: 10.1145/2602484

Buchanan, G., Farrant, S., Jones, M., Thimbleby, H., Marsden, G., & Pazzani, M. (2001). Improving mobile Internet usability. In
Proceedings of the 10th International World Wide Web Conference (pp. 673–680), Hong Kong.

Buffardi, K., & Edwards, S. H. (2013, August). Effective and ineffective software testing behaviors by novice programmers.
In Proceedings of the Ninth Annual International ACM Conference on International Computing Education Research
(pp. 83–90).

Buffum, P. S., Martinez-Arocho, A. G., Frankosky, M. H., Rodriguez, F. J., Wiebe, E. N., & Boyer, K. E. (2014, March).
CS Principles goes to middle school: Learning how to teach “big data.” In Proceedings of the 45th ACM Technical
Symposium on Computer Science Education (pp. 151–156), Atlanta, GA. doi: 10.1145/2538862.2538949

Burns, K., & Polman, J. (2006). The impact of ubiquitous computing in the Internet age: How middle school teachers integrat-
ed wireless laptops in the initial stages of implementation. Journal of Technology and Teacher Education, 14(2), 363–385.

Buzzetto-More, N., Ukoha, O., & Rustagi, N. (2010). Unlocking the barriers to women and minorities in computer science and
information systems studies: Results from a multi-methodolical study conducted at two minority serving institutions.
Journal of Information Technology Education, 9, 115–131.

Campbell, P. F., & McCabe, G. P. (1984). Predicting the success of freshmen in a computer science major. Communications of
the ACM, 27(11), 1108–1113.

Carter, L. (2006). Why students with an apparent aptitude for computer science don’t choose to major in computer science. In
Proceedings of the 37th SIGCSE Technical Symposium on Computer Science Education (pp. 27–31), Houston, TX.

Century, J., & Cassata, A. (in press). Measuring implementation and implementation research: Finding common ground on
what, how and why. Review of Research in Education, Centennial Edition. American Educational Research Association.

Century, J., Cassata, A., Rudnick, M., & Freeman, C. (2012). Measuring enactment of innovations and the factors that affect
implementation and sustainability: Moving toward common language and shared conceptual understanding. Journal of
Behavioral Health Services & Research, 39(4), 343–361.

Cernavskis, A. (2015, June 25). In San Francisco, computer science for all . . . soon. The Hechinger Report. Retrieved from
http://hechingerreport.org/san-francisco-plans-to-be-first-large-district-to-bring-computer-science-to-all-grades/

Chou, J.-R., & Hsiao, S.-W. (2007). A usability study on human-computer interface for middle-aged learners. Computers in
Human Behavior, 23, 2040–2063. doi: 10.1016/j.chb.2006.02.011

http://ecrp.uiuc.edu/v12n2/bers.html
https://connect.sri.com/owa/redir.aspx?SURL=0ZyLgwfzVM82Sov2R0x4ywwoSv3-VlGFTCx_kwPTja6g3Jh8HBbTCGgAdAB0AHAAOgAvAC8AcABhAGMAdAAuAHMAcgBpAC4AYwBvAG0ALwByAGUAcwBvAHUAcgBjAGUAcwAuAGgAdABtAGwA&URL=http%3a%2f%2fpact.sri.com%2fresources.html
http://pact.sri.com/resources.html
http://www.bostonpublicschools.org/domain/2054
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf
http://hechingerreport.org/san-francisco-plans-to-be-first-large-district-to-bring-computer-science-to-all-grades/
http://10.1016/j.chb

K–12 Computer Science Framework 279

Appendix E: Bibliography of Framework Research

Clarke, V. A., & Teague, G. J. (1996). Characterizations of computing careers: Students and professionals disagree. Computers
in Education, 26(4), 241–246.

Clements, D. H., & Gullo, D. F. (1974). Effects of computer programming on young children’s cognition. Journal of Educational
Psychology, 76(6), 1051–1058.

Cockburn, A., & Williams, L. (2000). The costs and benefits of pair programming. In Proceedings of XP2000, Sardinia, Italy.

College Board. (2016). AP Computer Science Principles course and exam description. New York, NY: Author. Retrieved
from https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-
description.pdf

Common Sense Media. (2012). Digital literacy and citizenship in a connected culture.

Computational thinking in STEM: Skills taxonomy. (n.d.). Retrieved from http://gk12northwestern.wikispaces.com/file/view/
CTSTEM_Skills_Taxonomy_4teachers.pdf

Computer Science Teachers Association & International Society for Technology in Education. (2011). Computational thinking
teacher resources (2nd ed.). Retrieved from https://csta.acm.org/Curriculum/sub/CurrFiles/
472.11CTTeacherResources_2ed-SP-vF.pdf

Computer Science Teachers Association Standards Task Force. (2011). CSTA K–12 computer science standards, revised 2011.
New York, NY: Computer Science Teachers Association and Association for Computing Machinery. Retrieved from
http://www.csteachers.org/resource/resmgr/Docs/Standards/CSTA_K-12_CSS.pdf

Computer Science Teachers Association Standards Task Force. (2016). [Interim] CSTA K–12 computer science standards,
revised 2016. Springfield, OR: Computer Science Teachers Association and Association for Computing Machinery.
Retrieved from http://www.csteachers.org/?page=CSTA_Standards

Computer Science Teachers Association Teacher Certification Task Force. (2008). Ensuring exemplary teaching in an essential
discipline: Addressing the crisis in computer science teacher certification. New York, NY: Computer Science Teachers
Association and the Association for Computing Machinery.

Cooper, S., Grover, S., Guzdial, M., & Simon, B. (2014). A future for computing education. Communications of the ACM,
57(11), 34–46.

CPALMS. (2016). Science standards and access points. Retrieved from http://www.cpalms.org/Downloads.aspx

Cotten, S. R., Shank, D. B., & Anderson, W. A. (2014). Gender, technology use and ownership, and media-based multitasking
among middle school students. Computers in Human Behavior, 35, 99–106.

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., & Woollard, J. (2015). Computational thinking:
A guide for teachers. Retrieved from the Computing at School website: http://computingatschool.org.uk/
computationalthinking

Dasgupta, S., Hale, W., Monroy-Hernández, A., & Hill, B. M. (2016, February). Remixing as a pathway to computational
thinking. In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing
(pp. 1438–1449).

De Boulay, B. (1989). Some difficulties of learning to program. In E. Soloway and J. Spohrer (Eds.), Studying the novice
programmer. Hillsdale, NJ: Lawrence Erlbaum Associates.

Denner, J. (2011). What predicts middle school girls’ interest in computing? International Journal of Gender, Science and
Technology 3(1), 53–69.

Denner, J., Werner, L., Campe, S., & Ortiz, E. (2014). Pair programming: Under what conditions is it advantageous for middle
school students? Journal of Research on Technology in Education, 46(3), 277–296.

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can they be used to measure
understanding of computer science concepts? Computers & Education, 58, 240–249.

Denning, P. J. (2013). The science in computer science. Communications of the ACM, 56(5), 35–38. doi:
10.1145/2447976.2447988

https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
http://gk12northwestern.wikispaces.com/file/view/CTSTEM_Skills_Taxonomy_4teachers.pdf
http://gk12northwestern.wikispaces.com/file/view/CTSTEM_Skills_Taxonomy_4teachers.pdf
https://csta.acm.org/Curriculum/sub/CurrFiles/472.11CTTeacherResources_2ed-SP-vF.pdf
https://csta.acm.org/Curriculum/sub/CurrFiles/472.11CTTeacherResources_2ed-SP-vF.pdf
http://www.csteachers.org/resource/resmgr/Docs/Standards/CSTA_K-12_CSS.pdf
http://www.csteachers.org/?page=CSTA_Standards
http://www.cpalms.org/Downloads.aspx
http://computingatschool.org.uk/computationalthinking
http://computingatschool.org.uk/computationalthinking

280 K–12 Computer Science Framework

Appendix E: Bibliography of Framework Research

Denning, P. J., & Martell, C. (2015). Great principles of computing. Cambridge, MA: MIT Press.

DevTech Research Group at Tufts University. (2016). The early childhood robotics network: Early childhood robotics curriculum.
Retrieved from http://tkroboticsnetwork.ning.com/page/robotics-curriculum

Di Vano, D., & Mirolo, C. (2011). “Computer science and nursery rhymes”: A learning path for the middle school. In
Proceedings of the 16th Annual Joint Conference on Innovation and Technology in Computer Science Education
(pp.238–242), New York, NY

Dodds, Z., & Erlinger, M. (2013). MyCS: Building a middle-years CS curriculum. In Proceedings of the 18th ACM
Conference on Innovation and Technology in Computer Science Education (p. 330), New York, NY.

Dorling, M., & Browning, P. (2015). Computing progression pathways KS1 (Y1) to KS3 (Y9) by topic. Computing at School.
Retrieved from http://community.computingatschool.org.uk/resources/1692

Dwyer, H., Hill, C., Carpenter, S., Harlow, D., & Franklin, D. (2014, March). Identifying elementary students’ pre-instructional
ability to develop algorithms and step-by-step instructions. In Proceedings of the 45th ACM Technical Symposium on
Computer Science Education (pp. 511–516).

Elkin, M., Sullivan, A., & Bers, M. U. (2014). Implementing a robotics curriculum in an early childhood Montessori
classroom. Journal of Information Technology Education: Innovations in Practice, 13, 153–169. Retrieved from
http://www.jite.org/documents/Vol13/JITEv13IIPvp153-169Elkin882.pdf

England Department for Education. (2013, September 11). National curriculum in England: Computing programmes of study.
Retrieved from https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-
of-study/national-curriculum-in-england-computing-programmes-of-study

Evers, V., & Day, D. (1997). The role of culture in interface acceptance. In S. Howard, J. Hammond, & G. Lindgaard (Eds.),
Proceedings of Human-Computer Interaction INTERACT’97 (pp. 260–267). Sydney, Australia: Chapman & Hall.

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5–6 years old kindergarten children in a computer
programming environment: A case study. Computers & Education, 63, 87–97.

Fields, D. A., Giang, M., and Kafai, Y. (2014). Programming in the wild: Trends in youth computational participation in the
online Scratch community. In Proceedings of the 9th Workshop in Primary and Secondary Computing Education
(pp. 2–11), New York, NY.

Fincher, S. (2015). What are we doing when we teach computing in schools? Communications of the ACM, 58(5), 24–26. doi:
10.1145/2742693

Fish, M. C., Gross, A. L., & Sanders, J. S. (1986). The effect of equity strategies on girls’ computer usage in school. Computers
in Human Behavior, 2, 127–134.

Forte, A., & Guzdial, M. (2004). Computers for communication, not calculation: Media as a motivation and context for
learning. In Proceedings of the 37th Annual Hawaii International Conference on System Sciences, Track 4, Volume 4
(p. 40096.1). Washington, DC: IEEE Computer Society. doi: 10.1109/HICSS.2004.1265259

Franklin, D., Conrad, P., Aldana, G., & Hough, S. (2011, March). Animal Tlatoque: Attracting middle school students to
computing through culturally-relevant themes. In Proceedings of the 42nd ACM Technical Symposium on Computer
Science Education (pp. 453–458), Dallas, TX.

Franklin, D. F. (2015, February). Putting the computer science in computing education research. Communications of the ACM,
58(2), 34–36.

Franklin, D., Hill, C., Dwyer, H., Iveland, A., Hansen, A., & Harlow, D. (2016). Initialization in Scratch: Seeking knowledge
transfer. In Proceedings of the 47th ACM Symposium on Computing Science Education (pp. 217–222), Memphis, TN.

Franklin, D., Hill, C., Dwyer, H., Iveland, A., Killina, A., & Harlow, D. (2015). Getting started in teaching and researching
computer science in the elementary classroom. In Proceedings of the 46th ACM Technical Symposium on Computer
Science Education (pp. 552–557), Kansas, City, MO.

http://tkroboticsnetwork.ning.com/page/robotics-curriculum
http://community.computingatschool.org.uk/resources/1692
http://www.jite.org/documents/Vol13/JITEv13IIPvp153-169Elkin882.pdf
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study

K–12 Computer Science Framework 281

Appendix E: Bibliography of Framework Research

Freischlad, S. (2007, November). Exploration module for understanding the functionality of the Internet in secondary education.
In Proceedings of the Seventh Baltic Sea Conference on Computing Education Research, Volume 88 (pp. 183–186).
Australian Computer Society, Inc.

Friedman, B. (1996). Value-sensitive design. Interactions, 3(6), 16–23.

Friend, M., & Robert, C. (2013). Efficient egg drop contests: How middle school girls think about algorithmic efficiency.
In Proceedings of the Ninth Annual International ACM Conference on International Computing Education Research
(pp. 99–106).

Garfield, J. (1995). How students learn statistics. International Statistical Review/Revue Internationale de Statistique, 63(1),
25–34.

Georgia Department of Education. (2016). Information technology career cluster. Retrieved from
http://www.gadoe.org/Curriculum-Instruction-and-Assessment/CTAE/Pages/cluster-IT.aspx

Goldberg, D., Grunwald, D., Lewis, C., Feld, J., Donley, K., & Edbrooke, O. (2013). Addressing 21st century skills by
embedding computer science in K–12 classes. In Proceeding of the 44th ACM Technical Symposium on Computer
Science Education (pp. 637–638).

Goldberg, D. S., Grunwald, D., Lewis, C., Feld, J. A., & Hug, S. (2012). Engaging computer science in traditional education:
The ECSITE project. In Proceedings of the 17th ACM Annual Conference on Innovation and Technology in Computer
Science Education (pp. 351–356).

Goldschmidt, D., MacDonald, I., O’Rourke, J., & Milonovich, B. (2011). An interdisciplinary approach to injecting computer
science into the K–12 classroom. Journal of Computing Science in College, (26)6, 78–85.

Good, C., Rattan, A., & Dweck, C. S. (2012). Why do women opt out? Sense of belonging and women’s representation in
mathematics. Journal of Personality and Social Psychology, 102(4), 700–717.

Goode, J., & Chapman, G. (2013). Exploring computer science: A high school curriculum exploring what computer science is
and what it can do (Version 5.0).

Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle
and high school students and experts. Journal of Research in Science Teaching, 28(9), 799–822.

Grover, S. (2015). “Systems of assessments” for deeper learning of computational thinking in K–12. Paper presented at the
annual meeting of the American Educational Research Association, Chicago, IL.

Grover, S., Cooper, S., & Pea, R. (2014). Assessing computational learning in K–12. In Proceedings of the 2014 Conference on
Innovation & Technology in Computer Science Education (pp. 57–62).

Grover, S., Jackiw, N., & Lundh, P. (2015). Thinking outside the box: Integrating dynamic mathematics to advance
computational thinking for diverse student populations. Abstract. Retrieved from http://www.nsf.gov/awardsearch/
showAward?AWD_ID=1543062

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational Researcher, 41(1),
38–43.

Grover, S., & Pea, R. (2013b). Using a discourse-intensive pedagogy and Android’s App Inventor for introducing computational
concepts to middle school students. In Proceedings of the 44th ACM Technical Symposium on Computer Science
Education (pp. 723–728), Denver, CO.

Grover, S., Pea, R., & Cooper, S. (2014). Remedying misperceptions of computer science among middle school students. In
Proceedings of the 45th ACM Technical Symposium on Computer Science Education (pp. 343–348), Atlanta, GA.

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer science course for middle
school students. Computer Science Education, 25(2), 199–237.

Grover, S., Pea, R., & Cooper, S. (2016, March). Factors influencing computer science learning in middle school. In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education (pp. 552–557), Memphis, TN.

Grover, S., Rutstein, D., & Snow, E. (2016, March). “What is a computer?”: What do secondary school students think? In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education (pp. 564–569), Memphis, TN.

http://www.gadoe.org/Curriculum-Instruction-and-Assessment/CTAE/Pages/cluster-IT.aspx
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1543062
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1543062

282 K–12 Computer Science Framework

Appendix E: Bibliography of Framework Research

Guernsey, L. (2012). Screen time: How electronic media from baby videos to educational software affects your young child.
Philadelphia, PA: Basic Books.

Guzdial, M. (2013a). Human-centered computing: A new degree for Licklider’s world. Communications of the ACM, 56(5),
32–34. doi: 10.1145/2447976.2447987

Guzdial, M. (2013b). Exploring hypotheses about media computation. In Proceedings of the Ninth Annual International ACM
Conference on International Computing Education Research (pp. 19–26).

Guzdial, M. (2016). Learner-centered design of computing education: Research on computing for everyone. Synthesis lectures
on human-centered informatics. Morgan and Claypool.

Hanks, B. (2008). Problems encountered by novice pair programmers. Journal on Educational Resources in Computing
(JERIC), 7(4), Article 2.

Hansen, A., Dwyer, H., Hill, C., Iveland, A., Martinez, T., Harlow, D., & Franklin, D. (2015). Interactive design by children:
A construct map for programming. In Proceedings of the 14th International Conference on Interaction Design and
Children (pp. 267–270).

Hansen, A., Iveland, A., Carlin, C., Harlow, D., & Franklin, D. (2016, June). User-centered design in block-based programming:
Developmental and pedagogical considerations for children. In Proceedings of the 15th International Conference on
Interaction Design and Children (pp. 147–156).

Hansen, A. K., Hansen, E. R., Dwyer, H. A., Harlow, D. B., & Franklin, D. (2016). Differentiating for diversity: Using universal
design for learning in computer science education. In Proceedings of the 47th ACM Technical Symposium on Computer
Science Education (pp. 376–381), Memphis, TN.

Harel, I., & Papert, S. (1990). Software design as a learning environment. Interactive Learning Environments, 1(1), 1–32.

Haspékian, M. (2003). Between arithmetic and algebra: A space for the spreadsheet? Contribution to an instrumental
approach. In Proceedings of the 3rd Conference of the European Society for Research in Mathematics Education,
Bellaria, Italy.

Herl, H. E., O’Neil, Jr., H. F., Chung, G. K. W. K., & Schacter, J. (1999). Reliability and validity of a computer-based knowledge
mapping system to measure content understanding. Computers in Human Behavior, 15, 315–333.

Hoadley, C., Xu, H., Lee, J. J., & Rosson, M. B. (2010). Privacy as information access and illusory control: The case of the
Facebook News Feed privacy outcry. Electronic Commerce Research and Applications, 9(1), 50–60.

Hubwieser, P., Armoni, M., Brinda, T., Dagiene, V., Diethelm, I., Giannakos, M. N., . . . Schubert, S. (2011, June). Computer
science/informatics in secondary education. In Proceedings of the 16th Annual Conference Reports on Innovation and
Technology in Computer Science Education—Working Group Reports (pp. 19–38).

Hubwieser, P., Magenheim, J., Mühling, A., & Ruf, A. (2013, August). Towards a conceptualization of pedagogical content
knowledge for computer science. In Proceedings of the Ninth Annual International ACM Conference on International
Computing Education Research (pp. 1–8).

Idaho State Department of Education. (2016). Idaho K–12 computer science standards. Draft document.

Indiana Department of Education. (2016). Science & computer science. Retrieved from
http://www.doe.in.gov/standards/science-computer-science

International Society for Technology in Education. (2012). Computational thinking toolkit. Retrieved from
http://www.iste.org/learn/computational-thinking/ct-toolkit

International Society for Technology in Education. (2016). ISTE standards for students. Retrieved from
https://www.iste.org/resources/product?id=3879&childProduct=3848

International Society for Technology in Education & Computer Science Teachers Association. (2011). Operational definition
of computational thinking for K–12 education. Retrieved from https://csta.acm.org/Curriculum/sub/CurrFiles/
CompThinkingFlyer.pdf

http://www.doe.in.gov/standards/science-computer-science
http://www.iste.org/learn/computational-thinking/ct-toolkit
https://www.iste.org/resources/product?id=3879&childProduct=3848
https://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf
https://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf

K–12 Computer Science Framework 283

Appendix E: Bibliography of Framework Research

Isaacs, A., Binkowski, T. A., Franklin, D., Rich, K., Strickland, C., Moran, C., . . . Maa, W. (2016). Learning trajectories for
integrating K–5 computer science and mathematics. In 2016 CISE/EHR principal investigator & community meeting for
CS in STEM project description booklet (p. 79). Retrieved from https://www.ncwit.org/sites/default/files/file_type/
pi_book_compressed_2016.pdf

Israel, M., Pearson, J., Tapia, T., Wherfel, Q., & Reese, G. (2015). Supporting all learners in school-wide computational
thinking: A cross case analysis. Electronic Commerce Research and Applications, 82, 263–279. doi: 10.1016/j.
compedu.2014.11.022

Israel, M., Wherfel, Q., Pearson, J., Shehab, S., & Tapia, T. (2015). Empowering K–12 students with disabilities to learn
computational thinking and computer programming. TEACHING Exceptional Children, 48(1), 45–53.

Jarman, S., & Bell, T. (2014, November). A game to teach network communication reliability problems and solutions. In
Proceedings of the 9th Workshop in Primary and Secondary Computing Education (pp. 43–49).

Joint Task Force on Computing Curricula, Association for Computing Machinery, & IEEE Computer Society. (2013, December
20). Computer science curricula 2013: Curriculum guidelines for undergraduate degree programs in computer science.
Association for Computing Machinery and IEEE.Retrieved from https://www.acm.org/education/CS2013-final-report.pdf

Kafai, Y. (2016). From computational thinking to computational participation in K–12 education. Communications of the ACM,
59(8), 26–27. doi: 10.1145/2955114

Kafai, Y. B., & Burke, Q. (2014). Connected code: Why children need to learn programming. Cambridge, MA: MIT Press.

Kafai, Y. B., & Burke, Q. (2015). Constructionist gaming: Understanding the benefits of making games for learning.
Educational Psychologist, 50(4), 313–334.

Kafai, Y. B., Franke, M. L., Ching, C. C., & Shih, J. C. (1998). Game design as an interactive learning environment for
fostering students’ and teachers’ mathematical inquiry. International Journal of Computers for Mathematical Learning, 3(2),
149–184. doi: 10.1023/A:1009777905226

Kay, A. (n.d.). Squeak Etoys, children, and learning. Viewpoints Research Institute (VPRI Research Note RN-2005-001).
Retrieved from http://www.squeakland.org/resources/articles/article.jsp?id=1009

Kay, A. (2003). Afterward: Our human condition “from space.” In B. J. Allen-Conn & K. Rose (Eds.), Powerful ideas in the
classroom: Using Squeak to enhance math and science learning (pp. 73–79). Glendale, CA: Viewpoints Research Institute.

Kazakoff, E., & Bers, M. (2012). Programming in a robotics context in the kindergarten classroom: The impact on sequencing
skills. Journal of Educational Multimedia and Hypermedia, 21(4), 371–391.

Kazakoff, E. R. (2015). Technology-based literacies for young children: Digital literacy through learning to code. In K. L. Heider
& M. Renck Jalongo (Eds.), Young children and families in the information age (pp. 43–60). New York, NY: Springer.

Koppelman, H. (2007). Exercises as a tool for sharing pedagogical knowledge. In Proceedings of the 12th Annual SIGCSE
Conference in Innovation and Technology in Computer Science Education (p. 361). doi: 10.1145/1268784.1268933

Koppelman, H. (2008, June). Pedagogical content knowledge and educational cases in computer science: An exploration. In
Proceeding of the Informing Science and IT Education Conference (InSITE) (pp. 125–133). Varna, Bulgaria.

Kothiyal, A., Majumdar, R., Murthy, S., & Iyer, S. (2013, August). Effect of think-pair-share in a large CS1 class: 83% sustained
engagement. In Proceedings of the Ninth Annual International ACM Conference on International Computing Education
Research (pp. 137–144).

Kreitmayer, S., Rogers, Y., Laney, R., & Peake, S. (2012, May). From participatory to contributory simulations: Changing the
game in the classroom. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 49–58).

Kuhn, A., McNally, B., Schmoll, S., Cahill, C., Lo, W. T., Quintana, C., & Delen, I. (2012, May). How students find, evaluate and
utilize peer-collected annotated multimedia data in science inquiry with zydeco. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (pp. 3061–3070).

Kurland, D. M., & Pea, R. D. (1985). Children’s mental models of recursive LOGO programs. Journal of Educational Computing
Research, 1(2), 235–243.

https://www.ncwit.org/sites/default/files/file_type/pi_book_compressed_2016.pdf
https://www.ncwit.org/sites/default/files/file_type/pi_book_compressed_2016.pdf
http://10.1016/j.compedu
http://10.1016/j.compedu
https://www.acm.org/education/CS2013-final-report.pdf
http://www.squeakland.org/resources/articles/article.jsp?id=1009

284 K–12 Computer Science Framework

Appendix E: Bibliography of Framework Research

Ladner, R., & Israel, M. (2016). “For all” in “computer science for all.” Communications of the ACM, 59(9), 26–28.

LeBlanc, M. D., & Dyer, B. D. (2004). Bioinformatics and computing curricula 2001: Why computer science is well positioned in
a post-genomic world. ACM SIGCSE Bulletin, 36(4), 64–68.

Lee, I. (2016). Reclaiming the roots of CT. CSTA Voice: The Voice of K–12 Computer Science Education and Its Educators,
12(1), 3–4. Retrieved from http://www.csteachers.org/resource/resmgr/Voice/csta_voice_03_2016.pdf

Lee, I., Martin, F., & Apone, K. (2014). Integrating computational thinking across the K–8 curriculum. ACM Inroads, 5(4), 64–71.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., . . . Werner, L. (2011). Computational thinking for youth in
practice. ACM Inroads, 2(1), 32–37.

Lee, M. J., & Ko, A. J. (2011). Personifying programming tool feedback improves novice programmers’ learning. In
Proceedings of the Seventh International Workshop on Computing Education Research (pp. 109–116), Providence, RI. doi:
10.1145/2016911.2016934

Leidner, D. E., & Kayworth, T. (2006). A review of culture in information systems research: Toward a theory of information
technology culture conflict. MIS Quarterly, 30(2), 357–399.

Leutenegger, S., & Edgington, J. (2007, March). A games first approach to teaching introductory programming. ACM SIGCSE
Bulletin 39(1), 115–118.

Lewis, C. M. (2012). Applications of out-of-domain knowledge in students’ reasoning about computer program state
(Doctoral dissertation).

Lewis, C. M. (2014, July). Exploring variation in students’ correct traces of linear recursion. In Proceedings of the Tenth Annual
Conference on International Computing Education Research (pp. 67–74).

Lewis, C. M. (2016). You wouldn’t know it from SIGCSE proceedings, but we don’t only teach CS1 (Abstract Only). In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education (p. 494).

Lewis, C. M., & Shah, N. (2012). Building upon and enriching grade four mathematics standards with programming curriculum.
In Proceedings of the 43rd ACM Technical Symposium on Computer Science Education (pp. 57–62).

Lewis, C. M., & Shah, N. (2015, July). How equity and inequity can emerge in pair programming. In Proceedings of the
Eleventh Annual International Conference on International Computing Education Research (pp. 41–50).

Li, C., Dong, Z., Untch, R. H., & Chasteen, M. (2013). Engaging computer science students through gamification in an online
social network based collaborative learning environment. International Journal of Information and Education Technology,
3(1), 72–77. doi: 10.7763/IJIET.2013.V3.237

Lishinski, A., Good, J., Sands, P., & Yadav, A. (2016, September). Methodological rigor and theoretical foundations of CS
education research. In Proceedings of the Twelfth Annual International Conference on International Computing Education
Research (pp. 161–169).

Lou, Y., Abrami, P.C., & d’Apollonia, S. (2001). Small group and individual learning with technology: A meta-analysis.
Review of Educational Research, 71, 449–521.

Lowther, D. L., Bassoppo-Moyo, T., & Morrison, G. R. (1998). Moving from computer literate to technologically competent:
The next educational reform. Computers in Human Behavior, 14(1), 93–109.

Lu, J. J., & Fletcher, G. H. L. (2009, March). Thinking about computational thinking. In Proceedings of the 40th SIGCSE Technical
Symposium on Computer Science Education (pp. 260–264), Chattanooga, TN.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is
next for K–12? Computers in Human Behavior, 41, 51–61.

Malik, S., & Agarwal, A. (2012). Use of multimedia as a new educational technology tool—A study. International Journal of
Information and Education Technology, 2(5), 468–471. doi: 10.7763.IJIET.2012.V2.181

Manduca, C., & Mogk, D., (2002, April). Using data in undergraduate science classrooms: Final report on an interdisciplinary
workshop at Carleton College. Northfield, MN: Science Education Resource Center, Carleton College. Retrieved from
http://serc.carleton.edu/usingdata/report.html

http://www.csteachers.org/resource/resmgr/Voice/csta_voice_03_2016.pdf
http://serc.carleton.edu/usingdata/report.html

K–12 Computer Science Framework 285

Appendix E: Bibliography of Framework Research

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Ronaldsson, L., & Settle, A. (2014, June). Computational thinking
in K–9 education. In Proceedings of the Working Group Reports of the 2014 Innovation & Technology in Computer
Science Education Conference, Uppsala, Sweden. doi: 10.1145/2713609.2713610

Marcus, B. (2015, August 12). The lack of diversity in tech is a cultural issue. Forbes. Retrieved from
http://www.forbes.com/sites/bonniemarcus/2015/08/12/the-lack-of-diversity-in-tech-is-a-cultural-issue/#622c464a3577

Margolis, J., Estrella, R., Goode, J., Holme, J. J., & Nao, K. (2010). Stuck in the shallow end: Education, race, and computing.
Cambridge, MA: MIT Press.

Margolis, J., Ryoo, J., Sandoval, C., Lee, C., Goode, J., & Chapman, G. (2012). Beyond access: Broadening participation in
high school computer science. ACM Inroads, 3(4), 72–78.

Mark, J., & DeLyser, L. (2016). CSNYC knowledge forum: Launching research and evaluation for computer science education,
for every school and every student in New York City. Abstract. Retrieved from http://www.nsf.gov/awardsearch/
showAward?AWD_ID=1637654

Maryland State Department of Education. (2005). Maryland technology education state curriculum. Retrieved from
http://mdk12.msde.maryland.gov/instruction/curriculum/technology_education/vsc_technologyeducation_standards.pdf

Maryland State Department of Education. (2015). Computer science. Retrieved from http://archives.marylandpublicschools.
org/MSDE/divisions/dccr/cs.html

Massachusetts Department of Elementary and Secondary Education. (2016, June). 2016 Massachusetts digital literacy and
computer science (DLCS) curriculum framework. Malden, MA: Author. Retrieved from http://www.doe.mass.edu/
frameworks/dlcs.pdf

Matias, J. N., Dasgupta, S., & Hill, B. M. (2016, May). Skill progression in Scratch revisited. Paper presented at the Conference
on Human Factors in Computing Systems, San Jose, CA.

Matuk, C., & King Chen, J. (2011, March). WISE Ideas: A technology-enhanced curriculum to scaffold students’ generating
data, managing evidence, and reasoning about the seasons. Teacher design focus group presented at the Cyberlearning
Tools for STEM Education Conference, Berkeley, CA.

McCrickard, D. S., & Lewis, C. (2012). Workshop on designing for cognitive limitations. Paper presented at the Designing
Interactive Systems Conference, Newcastle, UK.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2010, August). Learning computer science concepts with Scratch. In
Proceedings of the Sixth International Workshop on Computing Education Research (pp. 69–76).

Mesaroş, A. M., & Diethelm, I. (2012, November). Ways of planning lessons on the topic of networks and the Internet. In
Proceedings of the 7th Workshop in Primary and Secondary Computing Education (pp. 70–73).

Milenkovic, L., Acquavita, T., & Kim, D. (2015). Investigating conceptual foundations for a transdisciplinary model integrating
computer science into the elementary STEM curriculum. Abstract. Retrieved from http://www.nsf.gov/awardsearch/
showAward?AWD_ID=1542842

Milner, S. (1973). The effects of computer programming on performance in mathematics. Paper presented at the annual
meeting of the American Educational Research Association, New Orleans, LA.

Moore, T., Wick, M., & Peden, B. (1994). Assessing student’s critical thinking skills and attitudes toward computer science.
ACM SIGSCE Bulletin, 26(1), 263–267.

Morgan, C., Mariotti, M. A., & Maffei, L. (2009). Representation in computational environments: Epistemological and social
distance. International Journal of Computers for Mathematical Learning, 14(3), 241–263.

Morrison, B. B., Margulieux, L. E., & Guzdial, M. (2015, July). Subgoals, context, and worked examples in learning computing
problem solving. In Proceedings of the Eleventh Annual International Conference on International Computing Education
Research (pp. 21–29).

Moursund, D. (1983). Introduction to computers in education for elementary and middle school teachers. Eugene, OR:
International Council for Computers in Education.

http://www.forbes.com/sites/bonniemarcus/2015/08/12/the-lack-of-diversity-in-tech-is-a-cultural-issue/#622c464a3577
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1637654
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1637654
http://mdk12.msde.maryland.gov/instruction/curriculum/technology_education/vsc_technologyeducation_standards.pdf
http://archives.marylandpublicschools.org/MSDE/divisions/dccr/cs.html
http://archives.marylandpublicschools.org/MSDE/divisions/dccr/cs.html
http://www.doe.mass.edu/frameworks/dlcs.pdf
http://www.doe.mass.edu/frameworks/dlcs.pdf
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1542842
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1542842

286 K–12 Computer Science Framework

Appendix E: Bibliography of Framework Research

Moursund, D., & Ricketts, D. (2016). Computational thinking. IAE-pedia. Retrieved from http://iae-pedia.org/
Computational_Thinking

National Association of State Directors of Career Technical Education Consortium & National Career Technical Education
Foundation. (2012). Common career technical core. Silver Spring, MD: Authors.

National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common core state
standards. Washington DC: Author.

National Research Council. (2007). Taking science to school: Learning and teaching science in grades K–8. Committee on
Science Learning-Kindergarten Through Eighth Grade. R. A. Duschl, H. A. Schweingruber, & A. W. Shouse (Eds.). Board on
Science Education, Center for Education. Division of Behavioral and Social Sciences and Education. Washington, DC: The
National Academies Press.

National Research Council. (2010). Report of a workshop on the scope and nature of computational thinking. Washington, DC:
The National Academies Press. Retrieved from http://www.nap.edu/catalog/12840.html

National Research Council. (2012). A framework for K–12 science education: Practices, crosscutting concepts, and core ideas.
Committee on a Conceptual Framework for New K–12 Science Education Standards. Board on Science Education, Division
of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.

The New Zealand Curriculum Online. (2014). Technology. Retrieved from http://nzcurriculum.tki.org.nz/
The-New-Zealand-Curriculum/Technology

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NH: Prentice Hall.

Next Generation Science Standards Lead States. (2013). Next generation science standards: For states, by states. Washington,
DC: The National Academies Press.

North, A. S., & Noyes, J. M. (2002). Gender influences on children’s computer attitudes and cognitions. Computers in Human
Behavior, 18, 135–150.

Ohrndorf, L. (2015, July). Measuring knowledge of misconceptions in computer science education. In Proceedings of the
Eleventh Annual International Conference on International Computing Education Research (pp. 269–270).

Ouyang, Y., Wolz, U., & Rodger, S. H. (2010, March). Effective delivery of computing curriculum in middle school: Challenges
and solutions. In Proceedings of the 41st ACM Technical Symposium on Computer Science Education (pp. 327–328).
Milwaukee, WI.

Palumbo, D. B. (1990). Programming language/problem-solving research: A review of relevant issues. Review of Educational
Research, 60(1), 65–89.

Papert, S. (1971). A computer laboratory for elementary schools. Cambridge, MA: Massachusetts Institute of Technology.

Papert, S. (1980). Mindstorms: Children, computers and powerful ideas. New York, NY: Basic Books.

Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer programming. New Ideas in Psychology, 2,
137–168.

Pea, R. D., Soloway, E., & Spohrer, J. C. (1987). The buggy path to the development of programming expertise. Focus on
Learning Problems in Mathematics, 9, 5–30.

Pellegrino, J. W., & Hilton, M. L. (Eds.). (2012). Education for life and work: Developing transferable knowledge and skills in the
21st century. Washington, DC: The National Academies Press.

Perkins, D. N., & Salomon, G. (1988). Teaching for transfer. Educational Leadership, 46(1), 22–32.

Perkovic, L., & Settle, A. (2009). Computational thinking across the curriculum: A conceptual framework. Retrieved from
http://compthink.cs.depaul.edu/FinalFramework.pdf

Perkovic, L., Settle, A., Hwang, S., & Jones, J. (2010, June). A framework for computational thinking across the curriculum.
In Proceedings of the Fifteenth Annual Conference on Innovation and Technology in Computer Science Education
(pp. 123–127).

http://iae-pedia.org/Computational_Thinking
http://iae-pedia.org/Computational_Thinking
http://www.nap.edu/catalog/12840.html
http://nzcurriculum.tki.org.nz/The-New-Zealand-Curriculum/Technology
http://nzcurriculum.tki.org.nz/The-New-Zealand-Curriculum/Technology
http://compthink.cs.depaul.edu/FinalFramework.pdf

K–12 Computer Science Framework 287

Appendix E: Bibliography of Framework Research

Pillars of cyber security. (n.d.). Retrieved from https://www.usna.edu/CyberCenter/si110/lec/pillarsCybSec/lec.html

Plant, E. A., Baylor, A. L., Doerr, C. E., & Rosenberg-Kima, R. B. (2009). Changing middle-school students’ attitudes and
performance regarding engineering with computer-based social models. Computers & Education, 53, 209–215.

Porter, L., Guzdial, M., McDowell, C., & Simon, B. (2013). Success in introductory programming: What works? Communications
of the ACM, 56(8), 34–36. doi: 10.1145/24920072492020

Proulx, V. K. (1993, January). Computer science in elementary and secondary schools. In Proceedings of the IFIP TC3/WG3.1/
WG3.5 Open Converence on Informatics and Changes in Learning. Retrieved from http://www.ccs.neu.edu/home/vkp/
Papers/Gmunden93.pdf

Repenning, A., Webb, D., & Ioannidou, A. (2010). Scalable game design and the development of a checklist for getting
computational thinking into public schools. In Proceedings of the 41st ACM Technical Symposium on Computer Science
Education (pp. 265–269).

Resnick, M., Ocko, S., & Papert, S. (1988). LEGO, Logo, and design. Children’s Environments Quarterly, 5(4), 14–18.

Robertson, J., & Howells, C. (2008). Computer game design: Opportunities for successful learning. Computers and Education,
50, 559–578. doi: 10.1016/j.compedu.2007.09.020

Rodger, S. H., Brown, D., Hoyle, M., MacDonald, D., Marion, M., Onstwedder, E., . . . Ward, E. (2014, June). Weaving
computing into all middle school disciplines. In Proceedings of the 2014 Conference on Innovation & Technology in
Computer Science Education (pp. 207–212), Uppsala, Sweden. doi: 10.1145/2591708.2591754

Rodger, S. H., Hayes, J., Lezin, G., Qin, H., Nelson, D., Tucker, R., . . . Slater, D. (2009). Engaging middle school teachers and
students with Alice in a diverse set of subjects. In Proceedings of the 40th ACM Technical Symposium on Computer
Science Education (pp. 271–275), Chattanooga, TN.

Rose, D., & Meyer, A. (2000). Universal design for learning. Journal of Special Education Technology, 15(1), 67–70.

Saeli, M., Perrenet, J., Jochems, W. M., & Zwaneveld, B. (2011). Teaching programming in secondary school: A pedagogical
content knowledge perspective. Informatics in Education, 10(1), 73–88.

Saeli, M., Perrenet, J., Jochems, W. M., & Zwaneveld, B. (2012). Programming: Teachers and pedagogical content knowledge
in the Netherlands. Informatics in Education, 11(1), 81–114.

Schacter, J., Herl, H. E., Chung, G. K. W. K., Dennis, R. A., & O’Neil, Jr., H. F. (1999). Computer-based performance
assessments: A solution to the narrow measurement and reporting of problem solving. Computers in Human Behavior, 15,
403–418.

Schanzer, E., Fisler, K., Krishnamurthi, S., & Felleisen, M. (2015, February). Transferring skills at solving word problems from
computing to algebra through Bootstrap. In Proceedings of the 46th ACM Technical Symposium on Computer Science
Education (pp. 616–621).

Schanzer, E. T. (2015). Algebraic functions, computer programming, and the challenge of transfer (Doctoral dissertation).

Schofield, E., Erlinger, M., & Dodds, Z. (2014, March). MyCS: CS for middle-years students and their teachers. In Proceedings
of the 45th ACM Technical Symposium on Computer Science Education (pp. 337–342), Atlanta, GA. doi:
10.1145/2538862.2538901

Schulte, C., & Knobelsdorf, M. (2007). Attitudes towards computer science—computing experiences as a starting point and
barrier to computer science. In Proceedings of the Third International Workshop on Computing Education Research
(pp. 27–38). doi: 10.1145/1288580.1288585

Schulz, S., & Pinkwart, N. (2015, November). Physical computing in STEM education. In Proceedings of the Workshop in
Primary and Secondary Computing Education (pp. 134–135).

Seiter, L., & Foreman, B. (2013, August). Modeling the learning progressions of computational thinking of primary grade
students. In Proceedings of the Ninth Annual International ACM Conference on International Computing Education
Research (pp. 59–66).

https://www.usna.edu/CyberCenter/si110/lec/pillarsCybSec/lec.html
http://WG3.1/WG
http://WG3.1/WG
http://www.ccs.neu.edu/home/vkp/Papers/Gmunden93.pdf
http://www.ccs.neu.edu/home/vkp/Papers/Gmunden93.pdf
http://10.1016/j.compedu

288 K–12 Computer Science Framework

Appendix E: Bibliography of Framework Research

Sengupta, P., Kinnebrew, J. S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with K–12 science education:
A theoretical framework. Education and Information Technologies, 18, 351–380.

Settle, A., Franke, B., Hansen, R., Spaltro, F., Jurisson, C., Rennert-May, C., & Wildeman, B. (2012, July). Infusing
computational thinking into the middle- and high-school curriculum. In Proceedings of the 17th Annual Conference on
Innovation and Technology in Computer Science Education (pp. 22–27), Haifa, Israel.

Sherin, B. L. (2001). A comparison of programming languages and algebraic notation as expressive languages for physics.
International Journal of Computers for Mathematical Learning, 6(1), 1–61. doi: 10.1023/A:1011434026437

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher 15(2), 4–14. doi:
10.3102/0013189X015002004

Simon, Fincher, S., Robins, A., Baker, B., Box, I., Cutts, Q., . . . Tutty, J. (2006, January). Predictors of success in a first
programming course. In Proceedings of the Eighth Australasian Computing Education Conference (pp. 189–196), Hobart,
Tasmania, Australia.

Smith, J. L., Lewis, K. L., Hawthorne, L., & Hodges, S. D. (2013). When trying hard isn’t natural: Women’s belonging with and
motivation for male-dominated STEM fields as a function of effort expenditure concerns. Personality and Social Psychology
Bulletin, 39(2), 131–143.

Snyder, L. (2010). Six computational thinking practices. Retrieved from https://csprinciples.cs.washington.edu/sixpractices.html

Soloway, E. (1986). Learning to program = learning to construct mechanisms and explanations. Communications of the ACM,
29(9), 850–858.

Sprague, P., & Schahczenski, C. (2002). Abstraction the key to CS1. Journal of Computing Sciences in Colleges, 17(3),
211–218.

Sudol, L. A., Stehlik, M., & Carver, S. (2009). Mental models of data: A pilot study. Paper presented at Ninth Baltic Sea
Conference on Computing Education Research (Koli Calling 2009), Koli National Park, Finland.

Sullivan, G. (2014, May 29). Google statistics show Silicon Valley has a diversity problem. The Washington Post.
Retrieved from https://www.washingtonpost.com/news/morning-mix/wp/2014/05/29/
most-google-employees-are-white-men-where-are-allthewomen/

Syslo, M. M. (2015). From algorithmic to computational thinking: On the way for computing for all students. In Proceedings of
the 2015 ACM Conference on Innovation and Technology in Computer Science Education. Vilnius, Lithuania. doi:
10.1145/2729094.2742582

Taub, R., Armoni, M., & Ben-Ari, M. (2012). CS unplugged and middle-school students’ views, attitudes, and intentions
regarding CS. ACM Transactions on Computing Education, 12(2), Article 8.

Texas Education Agency. (2011). Technology applications TEKS. Retrieved from http://tea.texas.gov/
Curriculum_and_Instructional_Programs/Curriculum_Standards/TEKS_Texas_Essential_Knowledge_and_Skills_(TEKS)_
Review/Technology_Applications_TEKS/

Tucker, A., McCowan, D., Deek, F., Stephenson, C., Jones, J., & Verno, A. (2006). A model curriculum for K–12 computer
science: Report of the ACM K–12 task force curriculum committee (2nd ed.). New York, NY: Association for Computing
Machinery.

Twarek, B. (2015). Pre-K to 12 computer science scope and sequence. Retrieved from http://www.csinsf.org/curriculum.html

Valkenburg, P. M., & Peter, J. (2013). The differential susceptibility to media effects model. Journal of Communication, 63,
221–243. doi: 10.1111/jcom.12024

Vekiri, I., & Chronaki, A. (2008). Gender issues in technology use: Perceived social support, computer self-efficacy and value
beliefs, and computer use beyond school. Computers & Education, 51, 1392–1404.

Watson, W. E., Kumar, K., & Michaelsen, L. K. (1993). Cultural diversity’s impact on interaction process and performance:
Comparing homogeneous and diverse task groups. Academy of Management Journal, 36(3), 590–602.

Wehmeyer, M. L. (2015). Framing the future self-determination. Remedial and Special Education, 36(1), 20–23.

https://csprinciples.cs.washington.edu/sixpractices.html
https://www.washingtonpost.com/news/morning-mix/wp/2014/05/29/most-google-employees-are-white-men-where-are-allthewomen/
https://www.washingtonpost.com/news/morning-mix/wp/2014/05/29/most-google-employees-are-white-men-where-are-allthewomen/
http://tea.texas.gov/Curriculum_and_Instructional_Programs/Curriculum_Standards/TEKS_Texas_Essential_Knowledge_and_Skills_(TEKS)_Review/Technology_Applications_TEKS/
http://tea.texas.gov/Curriculum_and_Instructional_Programs/Curriculum_Standards/TEKS_Texas_Essential_Knowledge_and_Skills_(TEKS)_Review/Technology_Applications_TEKS/
http://tea.texas.gov/Curriculum_and_Instructional_Programs/Curriculum_Standards/TEKS_Texas_Essential_Knowledge_and_Skills_(TEKS)_Review/Technology_Applications_TEKS/
http://www.csinsf.org/curriculum.html
http://10.1111/jcom

K–12 Computer Science Framework 289

Appendix E: Bibliography of Framework Research

Wehmeyer, M. L., Shogren, K. A., Palmer, S. B., Williams-Diehm, K. L., Little, T. D., & Boulton, A. (2012). The impact of the
self-determined learning model of instruction on student self-determination. Exceptional Children, 78(2), 135–153.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2015). Defining computational thinking for
mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127–147.

Weintrop, D., & Wilensky, U. (2015). Using commutative assessments to compare conceptual understanding in blocks-based
and text-based programs. In Proceedings of the Eleventh Annual International Conference on International Computing
Education Research (pp. 101–110), Omaha, NE.

Werner, L., Campe, S., & Denner, J. (2012). Children learning computer science concepts via Alice game-programming. In
Proceedings of the Special Interest Group in Computer Science Education (pp. 215–220), Raleigh, NC.

Werner, L., & Jenner, D. (2009). Pair programming in middle school: What does it look like? Journal of Research on
Technology in Education, 42(1), 29–49.

Werner, L., Denner, J., & Campe, S. (2012, February–March). The fairy performance assessment: Measuring computational
thinking in middle school. In Proceedings of the 43rd ACM Technical Symposium on Computer Science Education
(pp. 215–220). doi: 10.1145/2157136.2157200

Werner, L., Denner, J., & Campe, S. (2014). Using computer game programming to teach computational thinking skills. In
K. Schrier (Ed.), Learning, education, and games (Vol. 1, pp. 37–53). Pittsburgh, PA: ETC Press.

Werner, L., Denner, J., Campe, S., Ortiz, E., DeLay, D., Hartl, A. C., & Laursen, B. (2013). Pair programming for middle school
students: Does friendship influence academic outcomes? In Proceedings of the 44th ACM Technical Symposium on
Computer Science Education (pp. 421–426). doi: 10.1145/2445196.2445322

Whitley, Jr., B. E. (1997). Gender differences in computer-related attitudes and behavior: A meta-analysis. Computers in
Human Behavior, 13(1), 1–22.

Wille, S. J., & Kim, D. (2015). Factors affecting high school student engagement in introductory computer science classes. In
Proceedings of the 46th ACM Technical Symposium on Computer Science Education (pp. 675–675), New York, NY. doi:
10.1145/2676723.2691891

Wille, S. J., Pike, M., & Century, J. (2015). Bringing AP Computer Science Principles to students with learning disabilities and/
or an ADHD: The hidden underrepresented group. Abstract. http://www.nsf.gov/awardsearch/showAward?AWD_
ID=1542963.

Williams, L. A., & Kessler, R. R. (2000). All I really need to know about pair programming I learned in kindergarten.
Communications of the ACM, 43(5), 108–114.

Williams, L., Kessler, R. R., Cunningham, W., & Jeffries, R. (2000). Strengthening the case for pair programming.
IEEE Software, 17(4), 19–25.

Wing, J. M. (2006, March). Computational thinking. Communications of the ACM, 49(3), 33–35.

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society,
366(1881), 3717–3725.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational thinking in elementary and secondary
teacher education. ACM Transactions on Computing Education, 14(1), Article 5, 1–16.

Yardi, S., & Bruckman, A. (2007). What is computing?: Bridging the gap between teenagers’ perceptions and graduate
students’ experiences. In Proceedings of the Third International Workshop on Computing Education Research (pp. 39–50).
doi: 10.1145/1288580.1288586

Zare-ee, A., & Shekarey, A. (2010). The effects of social, familial, and personal factors on students’ course selection in Iranian
technical schools. Procedia: Social and Behavioral Sciences, 9, 295–298.

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1542963
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1542963

K–12 Computer Science Framework 291

Appendix F: Frequently Asked Questions

Q. What is the framework?
A: The framework is a baseline, essential set of computer science concepts and practices. The focus

of the framework is to illuminate powerful ideas in K–12 computer science. Each of the core
concepts are delineated with expectations at four different grade-band endpoints: Grades 2, 5,
8, and 12. The practices are not delineated by explicit grade bands but instead provide a
narrative describing each practice’s progression from kindergarten to Grade 12.

Q: Why do we need a framework, and why is it important?
A: Computing is all around us in the modern world, yet many students do not understand how

these technologies work. Interest in computer science is increasing, and K–12 education is eager
to meet the demand. However, computer science is fairly new to K–12 education, and states,
districts, schools, and teachers need guidance for an appropriate K–12 pathway in computer
science.

Q: What is the vision of the framework?
A: The purpose is to create a high-level framework of computer science concepts and practices that

will empower students to
 • be informed citizens who can critically engage in public discussion on computer science-

 related topics;
 • develop as learners, users, and creators of computer science knowledge and artifacts;
 • better understand the role of computing in the world around them; and
 • learn, perform, and express themselves in other subjects and interests.

Q: What is computer science?
A: Computer science is the study of computers and algorithmic processes, including their principles,

design, implementation, and impact on society (Tucker, 2006, p. 2).

Q: Who is the framework for?
A: The K–12 Computer Science Framework is an initial step in a process that will inform state- and

district-level decisions to introduce and improve computer science education. The framework
was written for a variety of audiences with a wide range of backgrounds in computer science.
The primary audiences of the framework are state policymakers and administrators, district
policymakers and administrators, standards developers, curriculum developers, professional
development providers, researchers, and current and new computer science educators in both
formal and informal settings.

292 K–12 Computer Science Framework

Appendix F: Frequently Asked Questions

Q: Why is computer science important?
A: Computer science underpins many aspects of the modern world. The ubiquity of personal

computing in our lives and our exponentially increasing reliance on all things related to technolo-
gy have changed the fabric of society and day-to-day life. Unfortunately, K–12 students today
have limited opportunity to learn about these computer science ideas and practices and to
analyze how computing influences their daily lives.

Q: What are the core concepts and practices of the framework?
A:: The core concepts are categories that represent major content areas in the field of computer

science. They represent specific areas of disciplinary importance rather than abstract, general
ideas. The core practices are the behaviors that computationally literate students use to fully
engage with the core concepts of computer science.

 Core concepts
 1. Computing Systems
 2. Networks and the Internet
 3. Data and Analysis
 4. Algorithms and Programming
 5. Impacts of Computing

 Core practices
 1. Fostering an Inclusive Computing Culture
 2. Collaborating Around Computing
 3. Recognizing and Defining Computational Problems
 4. Developing and Using Abstractions
 5. Creating Computational Artifacts
 6. Testing and Refining Computational Artifacts
 7. Communicating About Computing

Q: Who created the framework?
A: The steering committee for the framework consists of representatives from the following organi-

zations: Association for Computing Machinery, Code.org, Computer Science Teachers Associa-
tion, Cyber Innovation Center, and National Math + Science Initiative. The writing team was
composed of representatives from participating states, school districts, K–12 educators, higher
education faculty, and research and nonprofit organizations (you can see their biographies in
Appendix B: Biographies of Writers and Development Staff). Leading researchers and repre-
sentatives from organizations in computer science education served as advisors to the writers
and the development staff. More than 100 computer science education practitioners and stake-
holder organizations served as reviewers, with more than 530 reviews submitted.

K–12 Computer Science Framework 293

Appendix F: Frequently Asked Questions

Q: Were teachers involved?
A: Many of the writers were current teachers or had been teachers in the past. Their experience

spanned kindergarten through Grade 12 and included a variety of subjects outside of computer
science. Some of the advisors were teachers, many of the development staff were former
teachers, and teachers were included in review periods and in focus groups during the
development process.

Q: How were states involved in the development of the framework?
A: For each of the involved states, representatives from the state department of education and

board of education attended the stakeholder convenings to provide feedback into the develop-
ment of the framework. The ten states that participated in the launch of the framework’s develop-
ment were asked to nominate someone from their state to serve on the writing team and to
convene a group to review the drafts of the framework in their state.

Q: How was the public involved in the creation of the framework?
A: Three public review periods were held during the development of the framework in 2016.

 Each lasted two to three weeks, and each was publicized widely to encourage the public to read
the draft versions and submit feedback via an online form. The feedback that was received was
read by the writers and development team, and common themes were addressed by the writers.
You can read more in the Development Process chapter and see a summary of the public
reviews in Appendix A: Feedback and Revisions.

Q: How was research used to inform the development of the framework?
A: The writing team considered the current literature on computer science education from the start

of the writing process. After the second draft of the framework was complete, a systematic
review of the literature related to the concepts and practices was completed. From this review,
concept and practice statements were tweaked to align them with the current research in the
field. You can read more in the The Role of Research in the Development and Future of the
Framework.

Q: What is the relationship between the framework and standards?
A: The framework broadly delineates the concepts students should know and the practices students

should exhibit, but it does not provide the level of detail of grade-by-grade standards, course
objectives or descriptions, or lesson plans. Instead it serves as a comprehensive guide for the
development of standards, curriculum, assessments, teacher education, and extracurricular
programs. The framework is not a set of standards. States may use the framework to develop
standards that will combine the concepts and practices into performance expectations that are
clear, specific, and measurable.

294 K–12 Computer Science Framework

Appendix F: Frequently Asked Questions

Q: How is the framework different from national standards?
A: The framework statements are not standards. They are purposefully not as prescriptive or

measurable as performance standards. They do not address individual grade-level granularity;
instead, they address grade bands and describe how learning progresses from one grade band
to another.

 There are far fewer statements in the framework than in a standards document. The focus of the
framework is to provide a minimum set of concepts and practices that describe baseline literacy
in computer science that all students should have. An explicit goal of the framework is to show
significance/application beyond computer science and significance for every citizen, not just
computer science students.

 The framework is intentionally designed for customization and will be freely available. It de-
scribes what students should learn using nontechnical prose that is easy to understand by a wide
audience. States and districts should make the final decision on the documents they use when
developing their own computer science standards.

 The framework distinguishes between concepts and practices. A standards document should
integrate these two dimensions into each standard.

 You can read more about how the framework can inform the development of standards in the
Guidance for Standards Developers chapter.

Q: What is the relationship with the Computer Science Teachers Association (CSTA) K–12 standards?
A: The K–12 Computer Science Framework served as one of many inputs into the interim

2016 revision of the CSTA K–12 computer science standards to ensure alignment and allow for
the computer science education community to speak with a coherent voice about what K–12
students should know and be able to do. The co-chairs of the CSTA standards revision task force
served as advisors to the framework, and half of the CSTA standards writers (including all of the
CSTA lead writers) served as writers of the framework.

Q: Are future revisions of the framework planned?
A: It is anticipated that the framework will be revised in the future.

Q: How does the framework address computer literacy and digital citizenship?
A: The framework defines K–12 computer science, which is different from digital citizenship and

computer literacy. Digital citizenship is defined as the norms of appropriate, responsible behavior
with regard to the use of technology (Massachusetts Department of Elementary and Secondary
Education, 2016). Computer literacy focuses on the use of existing technologies and computer
programs like word processing and spreadsheets (National Center for Women & Information
Technology).

K–12 Computer Science Framework 295

Appendix F: Frequently Asked Questions

 Computer science, on the other hand, is about “the ability to create and adapt new technolo-
gies” and involves analyzing how computers work and how they affect us (National Center for
Women & Information Technology, n.d., para.3). The K–12 Computer Science Framework is
meant to complement the instruction of computer literacy and digital citizenship. Instruction in all
three areas is important for all students.

Q: How does the framework address computational thinking?
A: Computational thinking refers to the thought processes involved in expressing solutions as

computational steps or algorithms that can be carried out by a computer (Cuny, Snyder, & Wing,
2010; Aho, 2011; Lee, 2016). It is delineated in four of the seven computer science practices in
the framework. Computer science offers a unique opportunity for students to develop computa-
tional thinking, but the opportunity to apply computational thinking extends beyond the context
of computer science. Recent revisions to the 2016 International Society for Technology in Educa-
tion Standards for Students are aligned with this definition of computational thinking. These
documents support the shared vision that computational thinking is important for all students in
all classes.

Q: How is the framework implemented in schools?
A: The framework can be used in a variety of ways. It can inform curriculum development, standards

development, K–12 pathways, teacher preparation and professional development, and class-
room assessment, among others. It can be implemented as standalone courses or integrated into
other subject areas, particularly at the elementary and middle school levels. You can read more in
the Implementation Guidance chapter.

Q: Where can I find the framework?
A: You can download a copy of the entire framework (all chapters, including guidance material) as a

PDF file at k12cs.org. Just want the concepts and practices? Click on “Framework Statements” in
the main menu to access the dropdown menu and select one of the three views. From each
page, you can download a PDF file of the concepts and practices.

Q: If I want help using the framework, whom should I contact?
A: You can reach out to the development staff with your questions using the form found at k12cs.org.

http://k12cs.org
http://k12cs.org

296 K–12 Computer Science Framework

Appendix F: Frequently Asked Questions

References
Aho, A. V. (2011, January). Computation and computational thinking. ACM Ubiquity, 1, 1–8. .

Cuny, J., Snyder, L., & Wing, J. M. (2010). Computational thinking: A definition. Unpublished manuscript.

Lee, I. (2016). Reclaiming the roots of CT. CSTA Voice: The Voice of K–12 Computer Science Education and Its Educators,
12(1), 3–4. Retrieved from http://www.csteachers.org/resource/resmgr/Voice/csta_voice_03_2016.pdf

Massachusetts Department of Elementary and Secondary Education. (2016, June). 2016 Massachusetts digital literacy and
computer science (DLCS) curriculum framework. Malden, MA: Author. Retrieved from http://www.doe.mass.edu/
frameworks/dlcs.pdf

National Center for Women & Information Technology. (n.d.). Moving beyond computer literacy: Why schools should
teach computer science. Retrieved from https://www.ncwit.org/resources/moving-beyond-computer-
literacy-why-schools-should-teach-computer-science/moving-beyond

Tucker, A., McCowan, D., Deek, F., Stephenson, C., Jones, J., & Verno, A. (2006). A model curriculum for K–12 computer
science: Report of the ACM K–12 task force curriculum committee (2nd ed.). New York, NY: Association for Computing
Machinery.

http://www.csteachers.org/resource/resmgr/Voice/csta_voice_03_2016.pdf
http://www.doe.mass.edu/frameworks/dlcs.pdf
http://www.doe.mass.edu/frameworks/dlcs.pdf
https://www.ncwit.org/resources/moving-beyond-computer-literacy-why-schools-should-teach-computer-science/moving-beyond
https://www.ncwit.org/resources/moving-beyond-computer-literacy-why-schools-should-teach-computer-science/moving-beyond

K–12 Computer Science Framework 297

Photo Credits

Photo Credits
Thank you to the students and teachers of the school districts who invited photographers to their classrooms and allowed
their photographs to be included in this document.

Lincoln High School, Tacoma, Washington: cover, pages 4, 21, 23, 39, 41, 42, 46, 54, 85, 87, 143, 151, 168, 176, 202, and 219.

John Muir Elementary School, Seattle, Washington: pages 12, 24, 31, 55, 57, 65, 67, 69, 70, 134, 181, 183, 199, 201, 208,
211, and 215.

Mount View Elementary School, White Center, Washington: pages 7, 9, 16, 53, 123, 125, 134, 136, 145, 147, 205, and 229.

We also thank the organizations who graciously shared photographs of students engaging in computer science, as well as the
students, parents, and teachers in the images.

DevTech Research Group: pages 194, 196, 272, and 273.

AccessCS10K from the University of Washington: page 33.

WCTE Cookeville, TN: pages 187 and 270.

WHRO Norfolk, VA: pages 187 and 270.

On the cover
The program displayed on the monitor was inspired by an anecdote in a book that has influenced many computer science
educators, Seymour Papert’s Mindstorms (1980). In this anecdote, Papert describes a hypothetical situation in which students
write a program to draw a garden of flowers. The anecdote illustrates how playing with a few powerful ideas can lead to
beautiful results. Papert’s powerful ideas inspired a generation of educators who continue to work to make his vision a reality.
These flowers have grown in the fertile ground that Papert prepared. Seymour Papert passed away on July 31, 2016. The
closer we get to his ideas, the farther we realize we have to go.

	_gjdgxs
	_ntedlzrmxene
	_30j0zll
	_dv19kovwnzz
	_1fob9te
	_2et92p0
	_3znysh7
	_tyjcwt
	_1t3h5sf
	_gkpx0hw0a7ow
	_30j0zll
	_3znysh7
	_tyjcwt
	_gjdgxs
	_30j0zll
	_1fob9te
	_3znysh7
	_2et92p0
	_tyjcwt
	_3dy6vkm
	_1t3h5sf
	_4d34og8
	_2s8eyo1
	_17dp8vu
	_3rdcrjn
	_26in1rg
	_lnxbz9
	_35nkun2
	_n03lgdcofoir
	_nou9ad38rb4l
	_k6etk1a2m9el
	_mshnd8o7ca4j
	_2jxsxqh
	_z337ya
	_3j2qqm3
	_1y810tw
	_4i7ojhp
	_2xcytpi
	_1ci93xb
	_3whwml4
	_2bn6wsx
	_vxbi13ra6xnw
	_oq4bw6qu00en
	_vnt2z13httib
	_3dsgmtojcrn1
	_nwtj4sm50xbb
	_evyvh4n7wc2d
	_8hrbywj6mg0d
	_t7lrckqhqym2
	_o3mcawjbgeks
	_gjdgxs
	_30j0zll
	_1fob9te
	_3znysh7
	_2et92p0
	_tyjcwt
	_3dy6vkm
	_1t3h5sf
	_4d34og8
	_2s8eyo1
	_17dp8vu
	_3rdcrjn
	_26in1rg
	_lnxbz9
	_35nkun2
	_gjdgxs
	_30j0zll
	_1fob9te
	_3znysh7
	_2et92p0
	_tyjcwt
	_3dy6vkm
	_1t3h5sf
	_4d34og8
	_2s8eyo1
	_17dp8vu
	_3rdcrjn
	_26in1rg
	_lnxbz9
	_35nkun2
	_1ksv4uv
	_44sinio
	_2jxsxqh
	_z337ya
	_3j2qqm3
	_1y810tw
	_4i7ojhp
	_2xcytpi
	_1ci93xb
	_3whwml4
	_2bn6wsx
	_qsh70q
	_3as4poj
	_1pxezwc
	_49x2ik5
	_2p2csry
	_147n2zr
	_3o7alnk
	_23ckvvd
	_ihv636
	_32hioqz
	_1hmsyys
	_41mghml
	_n3yqdwi9v4bh
	_efoxbo4re20m
	_q07qal58ianh
	_gjdgxs
	_gjdgxs
	_8zzotam92416
	_30j0zll
	_gjdgxs
	_pqep9jxzfj0x
	_30j0zll
	_vjc0kb2rklzd
	_al6d6o8eqk07
	_wp2yrmqn9aa3
	_5t9duqnazkdr
	_672261yahcee
	_d7jox9hl55xa
	_463s3tgl5qww
	_x4unwwe0b78x
	_6nv5kefdkhyf
	Executive Summary
	Chapter 1: A vision for K-12 Computer Science
	Chapter 2: Equity in Computer Science Education
	Chapter 3: Development Process
	Chapter 4: Navigating the Framework
	Chapter 5: Practices
	Chapter 6: Concepts
	Chapter 7: Guidance for Standards Developers
	Chapter 8: Implementation Guidance
	Chapter 9: Computer Science in Early Childhood Education
	Chapter 10: The role of research
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Figure 0.1: The K–12 Computer Science Framework
	Figure 1.1: Building blocks for standards
	Figure 2.1: Example of block-based programming language
	Figure 3.1: Framework development process
	Figure 3.2: Example of connection between two concepts in the same grade band
	Figure 3.3: Example of connection between two concepts in different grade bands
	Figure 3.4: Example of connection between two statements in the same core concept and grade band
	Figure 4.1: How to read the practices
	Figure 4.2: How to read the concepts
	Figure 4.3: Grade band view
	Figure 4.4: Progression view
	Figure 4.5: Concept view
	Figure 5.1: Core practices including computational thinking
	Figure 5.2: Relationships between computer science, science and engineering, and math practices
	Figure 7.1: Building blocks for standards
	Figure 7.2: Differentiating rigor for all students
	Figure 7.3: Determining the right amount of rigor for a standard
	Figure 7.4: Focusing on the concept
	Figure 7.5: A spectrum of specificity in standards
	Figure 7.6: Calibrating specificity across standards writers
	Figure 7.7: Example of technical terms versus simple language in standards
	Figure 7.8: Example learning progression
	Figure 7.9: Example of integrating a practice and concept to create a standard
	Figure 7.10: Second example of integrating a practice and concept to create a standard
	Figure 7.11: Exercise in standards creation
	Figure 7.12: Example of a computer science standard that connects with a science standard
	Figure 8.1: Recommended policies that promote and support computer science education
	Figure 8.2: Concepts and practices of the K–12 Computer Science Framework
	Figure 8.3: Characteristics of careers that students deem important
	Figure 8.4: Example of a culturally situated computing activity
	Figure 8.5: An example of the iterative process students could use to create a garden of flowers
	Figure 8.6: Options for implementing computer science
	Figure 8.7: Multiple pathways for implementing K–12 computer science
	Figure 8.8: Sample interview activity based on the framework
	Figure 9.1: Integrating powerful ideas in computer science and early childhood education
	Figure 9.2: Identifying patterns
	Figure 9.3: Student using technology resources during "Inventors Studio"
	Figure 9.4: Example of representing numbers using fingers
	Figure 9.5: Numeric values that represent colors
	Figure 9.6: Sequence of steps to make a cheeseburger
	Figure A.1: Occupations of reviewers
	Figure A.2: Survey responses on the importance of the framework

